Entire functions of exponential type and model subspaces in~$H^p$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 81-100

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $W_\sigma^p$ denote the space of all entire functions $f$ (in $\mathbb{C}$) of exponential type $\leqslant\sigma$, whose restrictions $f\mid\mathbb{R}$ belong to $L^p(\mathbb{R})$. For an inner function $\theta$ in the upper halfplane $\mathbb{C}_+$ let $K_\theta^p$ ($p\geqslant1$) be the star invariant subspace (or the model subspace) of $H^p$ generated by $\theta$: $K_\theta^p\stackrel{def}=H^p\cap\theta\overline{H^p}$, where $H^p=H^p(\mathbb{C}_+)$ is the usual Hardy class. It is shown that many well-known properties of the spaces $W_\sigma^p$ (e.g. some imbedding and uniqueness theorems, the Logvinenko–Sereda theorem about equivalent norms, the S. N. Bernstein differential inequality) hold for $K_\theta^p$ if and only if the derivative $\theta'$ is bounded. The classical results on entire functions are obtained by setting $\theta(x)=\exp(i\sigma x)$.
@article{ZNSL_1991_190_a3,
     author = {K. M. Dyakonov},
     title = {Entire functions of exponential type and model subspaces in~$H^p$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {81--100},
     publisher = {mathdoc},
     volume = {190},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a3/}
}
TY  - JOUR
AU  - K. M. Dyakonov
TI  - Entire functions of exponential type and model subspaces in~$H^p$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 81
EP  - 100
VL  - 190
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a3/
LA  - ru
ID  - ZNSL_1991_190_a3
ER  - 
%0 Journal Article
%A K. M. Dyakonov
%T Entire functions of exponential type and model subspaces in~$H^p$
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 81-100
%V 190
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a3/
%G ru
%F ZNSL_1991_190_a3
K. M. Dyakonov. Entire functions of exponential type and model subspaces in~$H^p$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 81-100. http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a3/