Spectral analysis of biorthogonal expansions generated by Muckenhoupt weights
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 34-80

Voir la notice de l'article provenant de la source Math-Net.Ru

Any Muckenhoupt $A_2$-weight $\omega^2$ on a special curve $\mathcal{\gamma}_\rho$ ($\rho\geqslant1/2$) generates a function $y_{\rho,\omega}(\lambda,t)$, which coincides with the exponential $\exp\{i\lambda t\}$ if $\rho=1$, $\omega^2(z)\equiv1$. In this paper the geometric approach of B. S. Pavlov is used to obtain criteria for a family of functions $\{y_{\rho,\omega}(\lambda_k,t): \lambda_k\in\Lambda\}$ to be an unconditional basis in the space $L_2(0,\sigma)$. The analytic machinery of the paper generalizes some results of M. M. Dzhrbashyan (for a power weight) for the case of an arbitrary Muckenhoupt $A_2$-weight.
@article{ZNSL_1991_190_a2,
     author = {G. M. Gubreev},
     title = {Spectral analysis of biorthogonal expansions generated by {Muckenhoupt} weights},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {34--80},
     publisher = {mathdoc},
     volume = {190},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a2/}
}
TY  - JOUR
AU  - G. M. Gubreev
TI  - Spectral analysis of biorthogonal expansions generated by Muckenhoupt weights
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 34
EP  - 80
VL  - 190
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a2/
LA  - ru
ID  - ZNSL_1991_190_a2
ER  - 
%0 Journal Article
%A G. M. Gubreev
%T Spectral analysis of biorthogonal expansions generated by Muckenhoupt weights
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 34-80
%V 190
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a2/
%G ru
%F ZNSL_1991_190_a2
G. M. Gubreev. Spectral analysis of biorthogonal expansions generated by Muckenhoupt weights. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 34-80. http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a2/