Spectral analysis of biorthogonal expansions generated by Muckenhoupt weights
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 34-80
Voir la notice de l'article provenant de la source Math-Net.Ru
Any Muckenhoupt $A_2$-weight $\omega^2$ on a special curve $\mathcal{\gamma}_\rho$ ($\rho\geqslant1/2$)
generates a function $y_{\rho,\omega}(\lambda,t)$, which coincides with the exponential
$\exp\{i\lambda t\}$ if $\rho=1$, $\omega^2(z)\equiv1$.
In this paper the geometric approach of B. S. Pavlov is used
to obtain criteria for a family of functions $\{y_{\rho,\omega}(\lambda_k,t): \lambda_k\in\Lambda\}$
to be an unconditional basis in the space $L_2(0,\sigma)$.
The analytic machinery of the paper generalizes some results of
M. M. Dzhrbashyan (for a power weight) for the case of an arbitrary
Muckenhoupt $A_2$-weight.
@article{ZNSL_1991_190_a2,
author = {G. M. Gubreev},
title = {Spectral analysis of biorthogonal expansions generated by {Muckenhoupt} weights},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {34--80},
publisher = {mathdoc},
volume = {190},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a2/}
}
G. M. Gubreev. Spectral analysis of biorthogonal expansions generated by Muckenhoupt weights. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 19, Tome 190 (1991), pp. 34-80. http://geodesic.mathdoc.fr/item/ZNSL_1991_190_a2/