Some nonlocal problems for two-dimensional equations of motion of Oldroyd fluids
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 10, Tome 189 (1991), pp. 101-121
Cet article a éte moissonné depuis la source Math-Net.Ru
The following nonlocal problems for two-dimensional equations of motion for Oldroyd fluids (1) are studied: global classical solvability on the semiaxis $t\in\mathbb{R}^+$ initial boundary-value problem (1), (2); the principle of linearized stability and stability of steady solutions and time periodic solutions; existence theorem of time periodic solutions of equations (1) with time periodic external force $f$.
@article{ZNSL_1991_189_a7,
author = {A. P. Oskolkov and D. V. Emelyanova},
title = {Some nonlocal problems for two-dimensional equations of motion of {Oldroyd} fluids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {101--121},
year = {1991},
volume = {189},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_189_a7/}
}
TY - JOUR AU - A. P. Oskolkov AU - D. V. Emelyanova TI - Some nonlocal problems for two-dimensional equations of motion of Oldroyd fluids JO - Zapiski Nauchnykh Seminarov POMI PY - 1991 SP - 101 EP - 121 VL - 189 UR - http://geodesic.mathdoc.fr/item/ZNSL_1991_189_a7/ LA - ru ID - ZNSL_1991_189_a7 ER -
A. P. Oskolkov; D. V. Emelyanova. Some nonlocal problems for two-dimensional equations of motion of Oldroyd fluids. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 10, Tome 189 (1991), pp. 101-121. http://geodesic.mathdoc.fr/item/ZNSL_1991_189_a7/