Differential-geometrical structures in the theory of two-dimensional integrable equations
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 10, Tome 189 (1991), pp. 75-81

Voir la notice de l'article provenant de la source Math-Net.Ru

Gauge transformations of the integrable generalization of the Heisenberg magnetic for the case of the $(2+1)$-dimensional space-time is interpreted in terms of the topological charge. Restrictions on the classes of solutions of the equation for the two-dimensional magnetic are described for the case when this equation is gauge equivalent to the Davy–Stuartson equation.
@article{ZNSL_1991_189_a5,
     author = {V. G. Michalev},
     title = {Differential-geometrical structures in the theory of two-dimensional integrable equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {75--81},
     publisher = {mathdoc},
     volume = {189},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_189_a5/}
}
TY  - JOUR
AU  - V. G. Michalev
TI  - Differential-geometrical structures in the theory of two-dimensional integrable equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 75
EP  - 81
VL  - 189
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_189_a5/
LA  - ru
ID  - ZNSL_1991_189_a5
ER  - 
%0 Journal Article
%A V. G. Michalev
%T Differential-geometrical structures in the theory of two-dimensional integrable equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 75-81
%V 189
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_189_a5/
%G ru
%F ZNSL_1991_189_a5
V. G. Michalev. Differential-geometrical structures in the theory of two-dimensional integrable equations. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 10, Tome 189 (1991), pp. 75-81. http://geodesic.mathdoc.fr/item/ZNSL_1991_189_a5/