On the infrared asymptotics of the velocity-velocity correlator in the theory of the turbulence
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 10, Tome 189 (1991), pp. 15-23
Cet article a éte moissonné depuis la source Math-Net.Ru
The stochastic theory of the developed turbulence is considered with the random force correlator of the form $k(k^2+m^2)^{-\varepsilon}$, $m$ being the inverse large turbulent scale. The first Kolmogorov hypothesis (i.e., finiteness of the equal time correlator of velocities at $\varepsilon<2$) is justified using the Wilson's operator product expansion.
@article{ZNSL_1991_189_a2,
author = {N. V. Antonov},
title = {On the infrared asymptotics of the velocity-velocity correlator in the theory of the turbulence},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {15--23},
year = {1991},
volume = {189},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_189_a2/}
}
N. V. Antonov. On the infrared asymptotics of the velocity-velocity correlator in the theory of the turbulence. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 10, Tome 189 (1991), pp. 15-23. http://geodesic.mathdoc.fr/item/ZNSL_1991_189_a2/