On a non-stationary problem in a dihedral angle.~I
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Tome 188 (1991), pp. 159-177

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate a boundary value problem for heat equation in the dihedral angle $D_\theta\subset \mathbb{R}^n$ with Neumann condition on one side of the angle and the boundary condition $$ x\frac{\partial u}{\partial t}-\frac{\partial u}{\partial x_2}+h\frac{\partial u}{\partial x_1}+\sum_{j=1}^3b_j\frac{\partial u}{\partial x_j}\bigm|_{\Gamma_{OT}}=\varphi_0, $$ (where $x>0$, $h\leqslant0$, $b_j$ are real constants) on another side. Unique solvability in weighted Sobolev spaces is proved.
@article{ZNSL_1991_188_a7,
     author = {E. V. Frolova},
     title = {On a non-stationary problem in a dihedral {angle.~I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {159--177},
     publisher = {mathdoc},
     volume = {188},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a7/}
}
TY  - JOUR
AU  - E. V. Frolova
TI  - On a non-stationary problem in a dihedral angle.~I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 159
EP  - 177
VL  - 188
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a7/
LA  - ru
ID  - ZNSL_1991_188_a7
ER  - 
%0 Journal Article
%A E. V. Frolova
%T On a non-stationary problem in a dihedral angle.~I
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 159-177
%V 188
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a7/
%G ru
%F ZNSL_1991_188_a7
E. V. Frolova. On a non-stationary problem in a dihedral angle.~I. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Tome 188 (1991), pp. 159-177. http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a7/