On a non-stationary problem in a dihedral angle.~I
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Tome 188 (1991), pp. 159-177
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate a boundary value problem for heat equation
in the dihedral angle $D_\theta\subset \mathbb{R}^n$ with Neumann condition on one
side of the angle and the boundary condition
$$
x\frac{\partial u}{\partial t}-\frac{\partial u}{\partial x_2}+h\frac{\partial u}{\partial x_1}+\sum_{j=1}^3b_j\frac{\partial u}{\partial x_j}\bigm|_{\Gamma_{OT}}=\varphi_0,
$$
(where $x>0$, $h\leqslant0$, $b_j$ are real constants) on another side.
Unique solvability in weighted Sobolev spaces is proved.
@article{ZNSL_1991_188_a7,
author = {E. V. Frolova},
title = {On a non-stationary problem in a dihedral {angle.~I}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {159--177},
publisher = {mathdoc},
volume = {188},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a7/}
}
E. V. Frolova. On a non-stationary problem in a dihedral angle.~I. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Tome 188 (1991), pp. 159-177. http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a7/