On the dynamical system associated with two dimensional equations of the motion of Bingham fluid
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Tome 188 (1991), pp. 128-142

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study solvability, uniqueness and regularity of the solution of the evolutional variational inequality arising in the theory of the motion of two dimensional Bingham fluid. Under some conditions it is proved that family of resolving operators is the semigroup which has the minimal global $B$-attractor $\mathfrak{M}_\lambda$. It is shown that for some values of the parameter $\lambda$ the structure of the attractor $\mathfrak{M}_\lambda$ is trivial. Some estimate of the dimension of the attractor $\mathfrak{M}_\lambda$ is given.
@article{ZNSL_1991_188_a5,
     author = {G. A. Seregin},
     title = {On the dynamical system associated with two dimensional equations of the motion of {Bingham} fluid},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {128--142},
     publisher = {mathdoc},
     volume = {188},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a5/}
}
TY  - JOUR
AU  - G. A. Seregin
TI  - On the dynamical system associated with two dimensional equations of the motion of Bingham fluid
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 128
EP  - 142
VL  - 188
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a5/
LA  - ru
ID  - ZNSL_1991_188_a5
ER  - 
%0 Journal Article
%A G. A. Seregin
%T On the dynamical system associated with two dimensional equations of the motion of Bingham fluid
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 128-142
%V 188
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a5/
%G ru
%F ZNSL_1991_188_a5
G. A. Seregin. On the dynamical system associated with two dimensional equations of the motion of Bingham fluid. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Tome 188 (1991), pp. 128-142. http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a5/