On the dynamical system associated with two dimensional equations of the motion of Bingham fluid
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Tome 188 (1991), pp. 128-142
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study solvability, uniqueness and regularity of the solution of the evolutional variational inequality arising in the theory of the motion of two dimensional Bingham fluid. Under some conditions it is proved that family of resolving operators is the semigroup which has the minimal global $B$-attractor $\mathfrak{M}_\lambda$. It is shown that for some values of the parameter $\lambda$ the structure of the attractor $\mathfrak{M}_\lambda$ is trivial. Some estimate of the dimension of the attractor $\mathfrak{M}_\lambda$ is given.
@article{ZNSL_1991_188_a5,
author = {G. A. Seregin},
title = {On the dynamical system associated with two dimensional equations of the motion of {Bingham} fluid},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {128--142},
publisher = {mathdoc},
volume = {188},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a5/}
}
TY - JOUR AU - G. A. Seregin TI - On the dynamical system associated with two dimensional equations of the motion of Bingham fluid JO - Zapiski Nauchnykh Seminarov POMI PY - 1991 SP - 128 EP - 142 VL - 188 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a5/ LA - ru ID - ZNSL_1991_188_a5 ER -
G. A. Seregin. On the dynamical system associated with two dimensional equations of the motion of Bingham fluid. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Tome 188 (1991), pp. 128-142. http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a5/