H\"older estimates near the boundary for quasilinear doubly degenerate parabolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Tome 188 (1991), pp. 45-69
Voir la notice de l'article provenant de la source Math-Net.Ru
Hölder estimates near the parabolic boundary of cylinder $Q_T=\Omega\times(0,T]$ for weak solutions of quasilinear doubly degenerate parabolic equations is established. The typical example of admissible equation is the equation of nonneutonian polythropic filtration $\partial u/\partial t-\partial/\partial x_i\{a_0|u|^{\sigma(m-1)}|\nabla u|^{m-2}\partial u/\partial x_i\}=0$, $a_0>0$, $\sigma>0$, $m>2$.
@article{ZNSL_1991_188_a1,
author = {A. V. Ivanov},
title = {H\"older estimates near the boundary for quasilinear doubly degenerate parabolic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {45--69},
publisher = {mathdoc},
volume = {188},
year = {1991},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a1/}
}
A. V. Ivanov. H\"older estimates near the boundary for quasilinear doubly degenerate parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 22, Tome 188 (1991), pp. 45-69. http://geodesic.mathdoc.fr/item/ZNSL_1991_188_a1/