Irregular singular point of the second Painlev\'e function and the nonlinear Stokes phenomenon
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 12, Tome 187 (1991), pp. 139-170

Voir la notice de l'article provenant de la source Math-Net.Ru

On the base of Isomonodromy Deformation Method the Elliptical asymptotic in complex domain of argument of Boutroux type for the second Painlevé function is constructed. The equations for the modul which depends from only $\arg x$ of elliptical sine are written down. The phase of elliptical sine for any $\arg x$ except the Stokes rays is expressed in terms of Stokes multipliers of the associated linear system. The last are the first integrals of Painlevé functions. The nonlinear Stokes phenomenon for the second Painlevé equation is described.
@article{ZNSL_1991_187_a8,
     author = {A. A. Kapaev},
     title = {Irregular singular point of the second {Painlev\'e} function and the nonlinear {Stokes} phenomenon},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {139--170},
     publisher = {mathdoc},
     volume = {187},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a8/}
}
TY  - JOUR
AU  - A. A. Kapaev
TI  - Irregular singular point of the second Painlev\'e function and the nonlinear Stokes phenomenon
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 139
EP  - 170
VL  - 187
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a8/
LA  - ru
ID  - ZNSL_1991_187_a8
ER  - 
%0 Journal Article
%A A. A. Kapaev
%T Irregular singular point of the second Painlev\'e function and the nonlinear Stokes phenomenon
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 139-170
%V 187
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a8/
%G ru
%F ZNSL_1991_187_a8
A. A. Kapaev. Irregular singular point of the second Painlev\'e function and the nonlinear Stokes phenomenon. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 12, Tome 187 (1991), pp. 139-170. http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a8/