On symmetrical solutions for the first and second Painlev\'e equations
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 12, Tome 187 (1991), pp. 129-138

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotics for the initial value problems for symmetrical solutions of $\mathbb{P}_1$ and $\mathbb{P}_2$ equations are obtained, i.e. the connection formulae for parameters which describe the behaviour of these solutions near zero and infinity are given.
@article{ZNSL_1991_187_a7,
     author = {A. V. Kitaev},
     title = {On symmetrical solutions for the first and second {Painlev\'e} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {129--138},
     publisher = {mathdoc},
     volume = {187},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a7/}
}
TY  - JOUR
AU  - A. V. Kitaev
TI  - On symmetrical solutions for the first and second Painlev\'e equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1991
SP  - 129
EP  - 138
VL  - 187
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a7/
LA  - ru
ID  - ZNSL_1991_187_a7
ER  - 
%0 Journal Article
%A A. V. Kitaev
%T On symmetrical solutions for the first and second Painlev\'e equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1991
%P 129-138
%V 187
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a7/
%G ru
%F ZNSL_1991_187_a7
A. V. Kitaev. On symmetrical solutions for the first and second Painlev\'e equations. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 12, Tome 187 (1991), pp. 129-138. http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a7/