Weaknonlinear solutions of the $\mathbb{P}_1^2$ equation
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 12, Tome 187 (1991), pp. 88-109
Cet article a éte moissonné depuis la source Math-Net.Ru
On the base of the isomonodromy deformation method the ($\mathrm{P}_1^2$) $$ \frac1{10}y^{(4)}+y''y+\frac12(y')^2+y^3=x $$ which is the first higher equation in the hierarchy of the first Painlevé equation is studied. The asymptotics of weaknonlinear solutions for $x\to\infty$ along the Stokes rays and asymptotics of real regular solutions for real $x\to\pm\infty$ are constructed.
@article{ZNSL_1991_187_a5,
author = {A. A. Kapaev},
title = {Weaknonlinear solutions of the $\mathbb{P}_1^2$ equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {88--109},
year = {1991},
volume = {187},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a5/}
}
A. A. Kapaev. Weaknonlinear solutions of the $\mathbb{P}_1^2$ equation. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 12, Tome 187 (1991), pp. 88-109. http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a5/