Weaknonlinear solutions of the $\mathbb{P}_1^2$ equation
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 12, Tome 187 (1991), pp. 88-109
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			On the base of the isomonodromy deformation method the ($\mathrm{P}_1^2$)
$$
\frac1{10}y^{(4)}+y''y+\frac12(y')^2+y^3=x
$$
which is the first higher equation in the hierarchy of the first
Painlevé equation is studied. The asymptotics of weaknonlinear
solutions for $x\to\infty$ along the Stokes rays and asymptotics of
real regular solutions for real $x\to\pm\infty$ are constructed.
			
            
            
            
          
        
      @article{ZNSL_1991_187_a5,
     author = {A. A. Kapaev},
     title = {Weaknonlinear solutions of the $\mathbb{P}_1^2$ equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--109},
     publisher = {mathdoc},
     volume = {187},
     year = {1991},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a5/}
}
                      
                      
                    A. A. Kapaev. Weaknonlinear solutions of the $\mathbb{P}_1^2$ equation. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 12, Tome 187 (1991), pp. 88-109. http://geodesic.mathdoc.fr/item/ZNSL_1991_187_a5/