Asymptotics of the radiating plane wave coefficients in the scattering problem on a smooth periodic boundary
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 20, Tome 186 (1990), pp. 71-86

Voir la notice de l'article provenant de la source Math-Net.Ru

Scattering problem of a plane wave on a smooth periodic curve in the case of small grazing angle and shortwave approximation is considered (period and radius of curvature of the curve are supposed to be large in compare with wave length). Using the solution previously obtained as an infinite sum of multiple diffracted fields in the vicinity of reflecting boundary the shortwave asymptotics of the coefficients of radiating plane waves is derived.
@article{ZNSL_1990_186_a6,
     author = {V. V. Zalipaev},
     title = {Asymptotics of the radiating plane wave coefficients in the scattering problem on a smooth periodic boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--86},
     publisher = {mathdoc},
     volume = {186},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_186_a6/}
}
TY  - JOUR
AU  - V. V. Zalipaev
TI  - Asymptotics of the radiating plane wave coefficients in the scattering problem on a smooth periodic boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 71
EP  - 86
VL  - 186
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_186_a6/
LA  - ru
ID  - ZNSL_1990_186_a6
ER  - 
%0 Journal Article
%A V. V. Zalipaev
%T Asymptotics of the radiating plane wave coefficients in the scattering problem on a smooth periodic boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 71-86
%V 186
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_186_a6/
%G ru
%F ZNSL_1990_186_a6
V. V. Zalipaev. Asymptotics of the radiating plane wave coefficients in the scattering problem on a smooth periodic boundary. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 20, Tome 186 (1990), pp. 71-86. http://geodesic.mathdoc.fr/item/ZNSL_1990_186_a6/