Finite-dimensional spectral inverse problem for the bundle of Hermite quadratic forms
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 20, Tome 186 (1990), pp. 33-36

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to recovering the coefficients of Hermite quadratic forms $c(x,x)$, $m(x,x)$ in the special basis, in which the matrix of $c(x,x)$ is tridiagonal and matrix of $m(x,x)$ is diagonal. The form $c(x,x)$ is positively definited. The form $m(x,x)$ is nondegenerated, but is not positively definite. The inverse problem data consist of the spectrum $\lambda_1,\dots,\lambda_n$ of bundle $\Pi_\lambda(x)=c(x,x)-\lambda m(x,x)$ and the set of numbers $\rho_1,\dots,\rho_n$ connected with the bundle of main normed elements.
@article{ZNSL_1990_186_a3,
     author = {M. I. Belishev and M. V. Putov},
     title = {Finite-dimensional spectral inverse problem for the bundle of {Hermite} quadratic forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--36},
     publisher = {mathdoc},
     volume = {186},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_186_a3/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - M. V. Putov
TI  - Finite-dimensional spectral inverse problem for the bundle of Hermite quadratic forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 33
EP  - 36
VL  - 186
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_186_a3/
LA  - ru
ID  - ZNSL_1990_186_a3
ER  - 
%0 Journal Article
%A M. I. Belishev
%A M. V. Putov
%T Finite-dimensional spectral inverse problem for the bundle of Hermite quadratic forms
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 33-36
%V 186
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_186_a3/
%G ru
%F ZNSL_1990_186_a3
M. I. Belishev; M. V. Putov. Finite-dimensional spectral inverse problem for the bundle of Hermite quadratic forms. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 20, Tome 186 (1990), pp. 33-36. http://geodesic.mathdoc.fr/item/ZNSL_1990_186_a3/