On behavior of a nonstationary wave field with a singularity (the homogeneous generalized function) on the initial front near the caustic
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 20, Tome 186 (1990), pp. 122-133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Cauchy problem for the wave equation in the case of a discontinuity on the initial front is investigated. The discontinuity is discribed by the homogeneous generalized function of degree $\lambda$. The transformation of the initial front passing the space-time caustic is studied. The structure of the wave front and space-time roys near the caustic is established.
@article{ZNSL_1990_186_a11,
     author = {N. Ya. Kirpichnikova},
     title = {On behavior of a nonstationary wave field with a singularity (the~homogeneous generalized function) on the initial front near the caustic},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--133},
     year = {1990},
     volume = {186},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_186_a11/}
}
TY  - JOUR
AU  - N. Ya. Kirpichnikova
TI  - On behavior of a nonstationary wave field with a singularity (the homogeneous generalized function) on the initial front near the caustic
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 122
EP  - 133
VL  - 186
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_186_a11/
LA  - ru
ID  - ZNSL_1990_186_a11
ER  - 
%0 Journal Article
%A N. Ya. Kirpichnikova
%T On behavior of a nonstationary wave field with a singularity (the homogeneous generalized function) on the initial front near the caustic
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 122-133
%V 186
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_186_a11/
%G ru
%F ZNSL_1990_186_a11
N. Ya. Kirpichnikova. On behavior of a nonstationary wave field with a singularity (the homogeneous generalized function) on the initial front near the caustic. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 20, Tome 186 (1990), pp. 122-133. http://geodesic.mathdoc.fr/item/ZNSL_1990_186_a11/