Minima of decomposable forms of degree~$n$ in $n$~variables for $n\geqslant3$
Zapiski Nauchnykh Seminarov POMI, Modular functions and quadratic forms. Part 1, Tome 183 (1990), pp. 142-154
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved the theorem: if for any $X\in\mathbb{Z}^n$ ($X\ne0$) be $|F(x)|\geqslant\mu>0$ for factorable form $F(X)$ of degree $n$ in $n$ variables then $F$ is equal up to a constant to a integral form provided that $n\geqslant3$.
@article{ZNSL_1990_183_a6,
author = {B. F. Skubenko},
title = {Minima of decomposable forms of degree~$n$ in $n$~variables for $n\geqslant3$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {142--154},
publisher = {mathdoc},
volume = {183},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a6/}
}
B. F. Skubenko. Minima of decomposable forms of degree~$n$ in $n$~variables for $n\geqslant3$. Zapiski Nauchnykh Seminarov POMI, Modular functions and quadratic forms. Part 1, Tome 183 (1990), pp. 142-154. http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a6/