Minima of decomposable forms of degree~$n$ in $n$~variables for $n\geqslant3$
Zapiski Nauchnykh Seminarov POMI, Modular functions and quadratic forms. Part 1, Tome 183 (1990), pp. 142-154

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved the theorem: if for any $X\in\mathbb{Z}^n$ ($X\ne0$) be $|F(x)|\geqslant\mu>0$ for factorable form $F(X)$ of degree $n$ in $n$ variables then $F$ is equal up to a constant to a integral form provided that $n\geqslant3$.
@article{ZNSL_1990_183_a6,
     author = {B. F. Skubenko},
     title = {Minima of decomposable forms of  degree~$n$ in $n$~variables for $n\geqslant3$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {142--154},
     publisher = {mathdoc},
     volume = {183},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a6/}
}
TY  - JOUR
AU  - B. F. Skubenko
TI  - Minima of decomposable forms of  degree~$n$ in $n$~variables for $n\geqslant3$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 142
EP  - 154
VL  - 183
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a6/
LA  - ru
ID  - ZNSL_1990_183_a6
ER  - 
%0 Journal Article
%A B. F. Skubenko
%T Minima of decomposable forms of  degree~$n$ in $n$~variables for $n\geqslant3$
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 142-154
%V 183
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a6/
%G ru
%F ZNSL_1990_183_a6
B. F. Skubenko. Minima of decomposable forms of  degree~$n$ in $n$~variables for $n\geqslant3$. Zapiski Nauchnykh Seminarov POMI, Modular functions and quadratic forms. Part 1, Tome 183 (1990), pp. 142-154. http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a6/