Jacobi functions and Euler products for Hermitian modular forms
Zapiski Nauchnykh Seminarov POMI, Modular functions and quadratic forms. Part 1, Tome 183 (1990), pp. 77-123
Voir la notice de l'article provenant de la source Math-Net.Ru
One defines different types of Hecke operators on the spaces of Jacobi modular forms. For modular forms of genus two it is established that non-standard zeta-function $Z_p^{(2)}(s)$ with degree six of local factors is equal to the Dirichlet series constructed from the Fourier-Jacobi coefficients of eigeafunctions $F$. It is proved that $Z_p^{(2)}(s)$ can be continued analytically into the entire complex plane.
@article{ZNSL_1990_183_a4,
author = {V. A. Gritsenko},
title = {Jacobi functions and {Euler} products for {Hermitian} modular forms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {77--123},
publisher = {mathdoc},
volume = {183},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a4/}
}
V. A. Gritsenko. Jacobi functions and Euler products for Hermitian modular forms. Zapiski Nauchnykh Seminarov POMI, Modular functions and quadratic forms. Part 1, Tome 183 (1990), pp. 77-123. http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a4/