Jacobi functions and Euler products for Hermitian modular forms
Zapiski Nauchnykh Seminarov POMI, Modular functions and quadratic forms. Part 1, Tome 183 (1990), pp. 77-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

One defines different types of Hecke operators on the spaces of Jacobi modular forms. For modular forms of genus two it is established that non-standard zeta-function $Z_p^{(2)}(s)$ with degree six of local factors is equal to the Dirichlet series constructed from the Fourier-Jacobi coefficients of eigeafunctions $F$. It is proved that $Z_p^{(2)}(s)$ can be continued analytically into the entire complex plane.
@article{ZNSL_1990_183_a4,
     author = {V. A. Gritsenko},
     title = {Jacobi functions and {Euler} products for {Hermitian} modular forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {77--123},
     year = {1990},
     volume = {183},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a4/}
}
TY  - JOUR
AU  - V. A. Gritsenko
TI  - Jacobi functions and Euler products for Hermitian modular forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 77
EP  - 123
VL  - 183
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a4/
LA  - ru
ID  - ZNSL_1990_183_a4
ER  - 
%0 Journal Article
%A V. A. Gritsenko
%T Jacobi functions and Euler products for Hermitian modular forms
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 77-123
%V 183
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a4/
%G ru
%F ZNSL_1990_183_a4
V. A. Gritsenko. Jacobi functions and Euler products for Hermitian modular forms. Zapiski Nauchnykh Seminarov POMI, Modular functions and quadratic forms. Part 1, Tome 183 (1990), pp. 77-123. http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a4/