Jacobi functions and Euler products for Hermitian modular forms
Zapiski Nauchnykh Seminarov POMI, Modular functions and quadratic forms. Part 1, Tome 183 (1990), pp. 77-123

Voir la notice de l'article provenant de la source Math-Net.Ru

One defines different types of Hecke operators on the spaces of Jacobi modular forms. For modular forms of genus two it is established that non-standard zeta-function $Z_p^{(2)}(s)$ with degree six of local factors is equal to the Dirichlet series constructed from the Fourier-Jacobi coefficients of eigeafunctions $F$. It is proved that $Z_p^{(2)}(s)$ can be continued analytically into the entire complex plane.
@article{ZNSL_1990_183_a4,
     author = {V. A. Gritsenko},
     title = {Jacobi functions and {Euler} products for {Hermitian} modular forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {77--123},
     publisher = {mathdoc},
     volume = {183},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a4/}
}
TY  - JOUR
AU  - V. A. Gritsenko
TI  - Jacobi functions and Euler products for Hermitian modular forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 77
EP  - 123
VL  - 183
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a4/
LA  - ru
ID  - ZNSL_1990_183_a4
ER  - 
%0 Journal Article
%A V. A. Gritsenko
%T Jacobi functions and Euler products for Hermitian modular forms
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 77-123
%V 183
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a4/
%G ru
%F ZNSL_1990_183_a4
V. A. Gritsenko. Jacobi functions and Euler products for Hermitian modular forms. Zapiski Nauchnykh Seminarov POMI, Modular functions and quadratic forms. Part 1, Tome 183 (1990), pp. 77-123. http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a4/