The zeta-function of a convolution
Zapiski Nauchnykh Seminarov POMI, Modular functions and quadratic forms. Part 1, Tome 183 (1990), pp. 22-48
Voir la notice de l'article provenant de la source Math-Net.Ru
The zeta function of a convolution $\zeta_k(s)=\sum\limits_{n=1}^\infty\frac{\tau(n)\tau(n+k)}{n^s}$ (it converges absolutely for $\mathrm{Re}\, s>1$) can be extended to a meromorphic function on the entire $s$-plane.
@article{ZNSL_1990_183_a1,
author = {A. I. Vinogradov},
title = {The zeta-function of a convolution},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {22--48},
publisher = {mathdoc},
volume = {183},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a1/}
}
A. I. Vinogradov. The zeta-function of a convolution. Zapiski Nauchnykh Seminarov POMI, Modular functions and quadratic forms. Part 1, Tome 183 (1990), pp. 22-48. http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a1/