The zeta-function of a convolution
Zapiski Nauchnykh Seminarov POMI, Modular functions and quadratic forms. Part 1, Tome 183 (1990), pp. 22-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The zeta function of a convolution $\zeta_k(s)=\sum\limits_{n=1}^\infty\frac{\tau(n)\tau(n+k)}{n^s}$ (it converges absolutely for $\mathrm{Re}\, s>1$) can be extended to a meromorphic function on the entire $s$-plane.
@article{ZNSL_1990_183_a1,
     author = {A. I. Vinogradov},
     title = {The zeta-function of a convolution},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {22--48},
     publisher = {mathdoc},
     volume = {183},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a1/}
}
TY  - JOUR
AU  - A. I. Vinogradov
TI  - The zeta-function of a convolution
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 22
EP  - 48
VL  - 183
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a1/
LA  - ru
ID  - ZNSL_1990_183_a1
ER  - 
%0 Journal Article
%A A. I. Vinogradov
%T The zeta-function of a convolution
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 22-48
%V 183
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a1/
%G ru
%F ZNSL_1990_183_a1
A. I. Vinogradov. The zeta-function of a convolution. Zapiski Nauchnykh Seminarov POMI, Modular functions and quadratic forms. Part 1, Tome 183 (1990), pp. 22-48. http://geodesic.mathdoc.fr/item/ZNSL_1990_183_a1/