Free boundary problem for the Navier--Stokes equations for a compressible fluid with a surface tension
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 142-148
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is conserned with evolutional problem governing
the motion of an isolated mass a viscous compressible liquid
whose particles attract each other according to the Newton's law.
The liquid is placed in the field of external forces and it is
subjected to external pressure and capillary forces at the boundary.
It is proved that this problem has a unique solution belonging
to some Sobolev space, on a finite time interval whose magnitude
depends on the data of the problem.
@article{ZNSL_1990_182_a8,
author = {V. A. Solonnikov and A. Tani},
title = {Free boundary problem for the {Navier--Stokes} equations for a compressible fluid with a surface tension},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {142--148},
publisher = {mathdoc},
volume = {182},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a8/}
}
TY - JOUR AU - V. A. Solonnikov AU - A. Tani TI - Free boundary problem for the Navier--Stokes equations for a compressible fluid with a surface tension JO - Zapiski Nauchnykh Seminarov POMI PY - 1990 SP - 142 EP - 148 VL - 182 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a8/ LA - ru ID - ZNSL_1990_182_a8 ER -
%0 Journal Article %A V. A. Solonnikov %A A. Tani %T Free boundary problem for the Navier--Stokes equations for a compressible fluid with a surface tension %J Zapiski Nauchnykh Seminarov POMI %D 1990 %P 142-148 %V 182 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a8/ %G ru %F ZNSL_1990_182_a8
V. A. Solonnikov; A. Tani. Free boundary problem for the Navier--Stokes equations for a compressible fluid with a surface tension. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 142-148. http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a8/