Free boundary problem for the Navier--Stokes equations for a compressible fluid with a surface tension
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 142-148

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is conserned with evolutional problem governing the motion of an isolated mass a viscous compressible liquid whose particles attract each other according to the Newton's law. The liquid is placed in the field of external forces and it is subjected to external pressure and capillary forces at the boundary. It is proved that this problem has a unique solution belonging to some Sobolev space, on a finite time interval whose magnitude depends on the data of the problem.
@article{ZNSL_1990_182_a8,
     author = {V. A. Solonnikov and A. Tani},
     title = {Free boundary problem for the {Navier--Stokes} equations for a compressible fluid with a surface tension},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {142--148},
     publisher = {mathdoc},
     volume = {182},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a8/}
}
TY  - JOUR
AU  - V. A. Solonnikov
AU  - A. Tani
TI  - Free boundary problem for the Navier--Stokes equations for a compressible fluid with a surface tension
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 142
EP  - 148
VL  - 182
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a8/
LA  - ru
ID  - ZNSL_1990_182_a8
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%A A. Tani
%T Free boundary problem for the Navier--Stokes equations for a compressible fluid with a surface tension
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 142-148
%V 182
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a8/
%G ru
%F ZNSL_1990_182_a8
V. A. Solonnikov; A. Tani. Free boundary problem for the Navier--Stokes equations for a compressible fluid with a surface tension. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 142-148. http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a8/