The asymptotics of discrete spectrum for the Schroedinger operator in electric and homogeneous magnetic fields
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 131-141

Voir la notice de l'article provenant de la source Math-Net.Ru

One studies the asymptotics of bound states below the bottom of essential spectrum for the Schroedinger operator in a homogeneous magnetic and a decreasing electric fields. The electric potential is not assumed to be nonpositive. The potential integrated along the direction of magnetic field is supposed to have a power-like behaviour at infinity. The asymptotics of bound states is shown to be of a power-like character, its main term is evaluated.
@article{ZNSL_1990_182_a7,
     author = {A. V. Sobolev},
     title = {The asymptotics of discrete spectrum for the {Schroedinger} operator in electric and homogeneous magnetic fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {131--141},
     publisher = {mathdoc},
     volume = {182},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a7/}
}
TY  - JOUR
AU  - A. V. Sobolev
TI  - The asymptotics of discrete spectrum for the Schroedinger operator in electric and homogeneous magnetic fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 131
EP  - 141
VL  - 182
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a7/
LA  - ru
ID  - ZNSL_1990_182_a7
ER  - 
%0 Journal Article
%A A. V. Sobolev
%T The asymptotics of discrete spectrum for the Schroedinger operator in electric and homogeneous magnetic fields
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 131-141
%V 182
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a7/
%G ru
%F ZNSL_1990_182_a7
A. V. Sobolev. The asymptotics of discrete spectrum for the Schroedinger operator in electric and homogeneous magnetic fields. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 131-141. http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a7/