The asymptotics of discrete spectrum for the Schroedinger operator in electric and homogeneous magnetic fields
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 131-141
Voir la notice de l'article provenant de la source Math-Net.Ru
One studies the asymptotics of bound states below the bottom of essential spectrum for the Schroedinger operator in a homogeneous magnetic and a decreasing electric fields. The electric potential is not assumed to be nonpositive. The potential integrated along the direction of magnetic field is supposed to have a power-like behaviour at infinity. The asymptotics of bound states is shown to be of a power-like character, its main term is evaluated.
@article{ZNSL_1990_182_a7,
author = {A. V. Sobolev},
title = {The asymptotics of discrete spectrum for the {Schroedinger} operator in electric and homogeneous magnetic fields},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {131--141},
publisher = {mathdoc},
volume = {182},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a7/}
}
TY - JOUR AU - A. V. Sobolev TI - The asymptotics of discrete spectrum for the Schroedinger operator in electric and homogeneous magnetic fields JO - Zapiski Nauchnykh Seminarov POMI PY - 1990 SP - 131 EP - 141 VL - 182 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a7/ LA - ru ID - ZNSL_1990_182_a7 ER -
%0 Journal Article %A A. V. Sobolev %T The asymptotics of discrete spectrum for the Schroedinger operator in electric and homogeneous magnetic fields %J Zapiski Nauchnykh Seminarov POMI %D 1990 %P 131-141 %V 182 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a7/ %G ru %F ZNSL_1990_182_a7
A. V. Sobolev. The asymptotics of discrete spectrum for the Schroedinger operator in electric and homogeneous magnetic fields. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 131-141. http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a7/