An error estimate uniform in time for spectral Galerkln approximations of the Kelvin-Voight problem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 123-130
Voir la notice de l'article provenant de la source Math-Net.Ru
An error estimate uniform in time for spectral Galerkin
approximations for solutions of initial boundary-value problem
for the equations of motion of Kelvin–Voight fluids (1), (2):
$$
\sup_{t\geqslant0}||v_x-v_x^N||_{2,\Omega_t}\leqslant c\lambda_{N+1}^{-1/2}
$$
is received; we suppose that solution $v$ is conditionally exponentially stable.
@article{ZNSL_1990_182_a6,
author = {A. P. Oskolkov},
title = {An error estimate uniform in time for spectral {Galerkln} approximations of the {Kelvin-Voight} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {123--130},
publisher = {mathdoc},
volume = {182},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a6/}
}
TY - JOUR AU - A. P. Oskolkov TI - An error estimate uniform in time for spectral Galerkln approximations of the Kelvin-Voight problem JO - Zapiski Nauchnykh Seminarov POMI PY - 1990 SP - 123 EP - 130 VL - 182 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a6/ LA - ru ID - ZNSL_1990_182_a6 ER -
A. P. Oskolkov. An error estimate uniform in time for spectral Galerkln approximations of the Kelvin-Voight problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 123-130. http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a6/