An error estimate uniform in time for spectral Galerkln approximations of the Kelvin-Voight problem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 123-130

Voir la notice de l'article provenant de la source Math-Net.Ru

An error estimate uniform in time for spectral Galerkin approximations for solutions of initial boundary-value problem for the equations of motion of Kelvin–Voight fluids (1), (2): $$ \sup_{t\geqslant0}||v_x-v_x^N||_{2,\Omega_t}\leqslant c\lambda_{N+1}^{-1/2} $$ is received; we suppose that solution $v$ is conditionally exponentially stable.
@article{ZNSL_1990_182_a6,
     author = {A. P. Oskolkov},
     title = {An error estimate uniform in time for spectral {Galerkln} approximations of the {Kelvin-Voight} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {123--130},
     publisher = {mathdoc},
     volume = {182},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a6/}
}
TY  - JOUR
AU  - A. P. Oskolkov
TI  - An error estimate uniform in time for spectral Galerkln approximations of the Kelvin-Voight problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 123
EP  - 130
VL  - 182
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a6/
LA  - ru
ID  - ZNSL_1990_182_a6
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%T An error estimate uniform in time for spectral Galerkln approximations of the Kelvin-Voight problem
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 123-130
%V 182
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a6/
%G ru
%F ZNSL_1990_182_a6
A. P. Oskolkov. An error estimate uniform in time for spectral Galerkln approximations of the Kelvin-Voight problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 123-130. http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a6/