An error estimate uniform in time for spectral Galerkln approximations of the Kelvin-Voight problem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 123-130
Cet article a éte moissonné depuis la source Math-Net.Ru
An error estimate uniform in time for spectral Galerkin approximations for solutions of initial boundary-value problem for the equations of motion of Kelvin–Voight fluids (1), (2): $$ \sup_{t\geqslant0}||v_x-v_x^N||_{2,\Omega_t}\leqslant c\lambda_{N+1}^{-1/2} $$ is received; we suppose that solution $v$ is conditionally exponentially stable.
@article{ZNSL_1990_182_a6,
author = {A. P. Oskolkov},
title = {An error estimate uniform in time for spectral {Galerkln} approximations of the {Kelvin-Voight} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {123--130},
year = {1990},
volume = {182},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a6/}
}
A. P. Oskolkov. An error estimate uniform in time for spectral Galerkln approximations of the Kelvin-Voight problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 123-130. http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a6/