Some comments to my papers on the theory of attractors for abstract semigroups
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 102-112
Voir la notice de l'article provenant de la source Math-Net.Ru
In § 1 the improvement of the estimates on the Hausdorff and fractal dimensions of a bounded semi-invariant subset in a Hilbert space is given. In § 2 my previous results, concerning the semigroups with a continuous group parameter $t\in\mathrm{R}^+=[0,\infty)$, are extended to the case where $t$ varies in a semigroup $\mathcal{J}^+=\{t\in\mathcal{J}\mid t\geqslant0\}$ of positive elements of some additive group $\mathcal{J}\subset\mathrm{R}=(-\infty,\infty)$.
@article{ZNSL_1990_182_a4,
author = {O. A. Ladyzhenskaya},
title = {Some comments to my papers on the theory of attractors for abstract semigroups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {102--112},
publisher = {mathdoc},
volume = {182},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a4/}
}
O. A. Ladyzhenskaya. Some comments to my papers on the theory of attractors for abstract semigroups. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 102-112. http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a4/