Apriori estimates on the semiaxis $t\geqslant0$ for solutions of equations of motion of linear viscoelastic fluids with infinite Dirichlet integral and their applications
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 86-101
Voir la notice de l'article provenant de la source Math-Net.Ru
Global solvability on the semiaxis $t\geqslant0$ initial value problems for equations of motion of linear viscoelastic fluids with following external forse $f(x,t):f,f_t\in L_\infty(\mathrm{R}^+;L_2(\Omega))$ is investigated. Existence time periodicity of “small” smooth stable solutions of equations of motion of Oldroyd type fluids and Kelvin–Voight type fluids with “small” time periodicity external forse $f$ is proved.
@article{ZNSL_1990_182_a3,
author = {A. A. Kotsiolis and A. P. Oskolkov and R. D. Shadiev},
title = {Apriori estimates on the semiaxis $t\geqslant0$ for solutions of equations of motion of linear viscoelastic fluids with infinite {Dirichlet} integral and their applications},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {86--101},
publisher = {mathdoc},
volume = {182},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a3/}
}
TY - JOUR AU - A. A. Kotsiolis AU - A. P. Oskolkov AU - R. D. Shadiev TI - Apriori estimates on the semiaxis $t\geqslant0$ for solutions of equations of motion of linear viscoelastic fluids with infinite Dirichlet integral and their applications JO - Zapiski Nauchnykh Seminarov POMI PY - 1990 SP - 86 EP - 101 VL - 182 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a3/ LA - ru ID - ZNSL_1990_182_a3 ER -
%0 Journal Article %A A. A. Kotsiolis %A A. P. Oskolkov %A R. D. Shadiev %T Apriori estimates on the semiaxis $t\geqslant0$ for solutions of equations of motion of linear viscoelastic fluids with infinite Dirichlet integral and their applications %J Zapiski Nauchnykh Seminarov POMI %D 1990 %P 86-101 %V 182 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a3/ %G ru %F ZNSL_1990_182_a3
A. A. Kotsiolis; A. P. Oskolkov; R. D. Shadiev. Apriori estimates on the semiaxis $t\geqslant0$ for solutions of equations of motion of linear viscoelastic fluids with infinite Dirichlet integral and their applications. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 86-101. http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a3/