The Cauchy problem for a semilinear wave equation. II
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 38-85
Voir la notice de l'article provenant de la source Math-Net.Ru
The Cauchy problem for a semilinear hyperbolic equation of the form
$$
\frac{\partial^2}{\partial t^2}u(t,x)+iB(t)\frac\partial{\partial t}u(t,x)+A(t)u(t,x)+f(t,x;u(t,x))=0\qquad{(1)}
$$
is studied. In (1): $x$ runs through a smooth Riemannian manifold
$\mathfrak{M}$ without boundary, $\mathrm{dim}\,\mathfrak{M}=n\geqslant3$, $A(t)$ and $B(t)$
are time-dependent pseudodifferential operators (on $\mathfrak{M}$) of
order 2 and $\leqslant1$, resp., with real principal symbols $a_2(t,x,\xi)$
and $b_1(t,x,\xi)$, and $a_2(t,x,\xi)\geqslant\nu|\xi|^2$, $\nu>0$, all $t$ and
$(x,\xi)\in T^*\mathfrak{M}\setminus0$. Under certain assumptions on the nonlinearity $f$
which, in the special case of differential operators $A(t)$ and $B(t)$
and $f(t,x;z)=\lambda|z|^{\rho-1}z$, reduce to $\lambda\geqslant0$
and $1\leqslant\rho\leqslant(n+2)/(n-2)$ (the critical value $\rho=(n+2)/(n-2)$ is allowed.),
we prove that for arbitrary initial data
$$
u(0)=\varphi\in H^1,\quad \frac\partial{\partial t}u(0)=\psi\in L_2\qquad{(2)}
$$
there exists and is unique the global in $t$ weak solution $u$
of the problem (1), (2).
@article{ZNSL_1990_182_a2,
author = {L. V. Kapitanskii},
title = {The {Cauchy} problem for a semilinear wave equation. {II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {38--85},
publisher = {mathdoc},
volume = {182},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a2/}
}
L. V. Kapitanskii. The Cauchy problem for a semilinear wave equation. II. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 38-85. http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a2/