On existence of H\"older continuous generalized solutions of first boundary value problem for quasilinear doubly degenerate parabolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 5-28
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove the existence of nonnegative Hölder continuous generalized solutions of the Cauchy–Dirichlet problem for a class of degenerate parabolic equations, in particular, for the equation.
@article{ZNSL_1990_182_a0,
author = {A. V. Ivanov and P. Z. Mkrtychian},
title = {On existence of {H\"older} continuous generalized solutions of first boundary value problem for quasilinear doubly degenerate parabolic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--28},
publisher = {mathdoc},
volume = {182},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a0/}
}
TY - JOUR AU - A. V. Ivanov AU - P. Z. Mkrtychian TI - On existence of H\"older continuous generalized solutions of first boundary value problem for quasilinear doubly degenerate parabolic equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1990 SP - 5 EP - 28 VL - 182 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a0/ LA - ru ID - ZNSL_1990_182_a0 ER -
%0 Journal Article %A A. V. Ivanov %A P. Z. Mkrtychian %T On existence of H\"older continuous generalized solutions of first boundary value problem for quasilinear doubly degenerate parabolic equations %J Zapiski Nauchnykh Seminarov POMI %D 1990 %P 5-28 %V 182 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a0/ %G ru %F ZNSL_1990_182_a0
A. V. Ivanov; P. Z. Mkrtychian. On existence of H\"older continuous generalized solutions of first boundary value problem for quasilinear doubly degenerate parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 21, Tome 182 (1990), pp. 5-28. http://geodesic.mathdoc.fr/item/ZNSL_1990_182_a0/