Nonlocal problems of the theory of the equations of motion for Kelvin--Voight fluids
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 11, Tome 181 (1990), pp. 146-185
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following nonlocal problems for the threedimensional equations of motion of Kelvin–Veight fluids (14) are studied: global classical solvability on the semiaxis $\mathbb{R}^+$ initial boundary-value problem (14), (15) in the class $W^1_\infty(\mathbb{R}^+;W_2^2(\Omega)\cap H(\Omega))$; the principle of linearized stability and stability of steady solutions and time periodic solutions; global existence theorem of time periodic solutions of equations (14) in the class $W^1_\infty(\mathbb{R}^+;W_2^2(\Omega)\cap H(\Omega))$ with time periodic external force $f(x,t)\in L_\infty(\mathbb{R}^+;L_2(\Omega))$.
			
            
            
            
          
        
      @article{ZNSL_1990_181_a5,
     author = {A. P. Oskolkov and R. D. Shadiev},
     title = {Nonlocal problems of the theory of the equations of motion for {Kelvin--Voight} fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--185},
     publisher = {mathdoc},
     volume = {181},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a5/}
}
                      
                      
                    TY - JOUR AU - A. P. Oskolkov AU - R. D. Shadiev TI - Nonlocal problems of the theory of the equations of motion for Kelvin--Voight fluids JO - Zapiski Nauchnykh Seminarov POMI PY - 1990 SP - 146 EP - 185 VL - 181 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a5/ LA - ru ID - ZNSL_1990_181_a5 ER -
A. P. Oskolkov; R. D. Shadiev. Nonlocal problems of the theory of the equations of motion for Kelvin--Voight fluids. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 11, Tome 181 (1990), pp. 146-185. http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a5/