Nonlocal problems of the theory of the equations of motion for Kelvin--Voight fluids
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 11, Tome 181 (1990), pp. 146-185

Voir la notice de l'article provenant de la source Math-Net.Ru

The following nonlocal problems for the threedimensional equations of motion of Kelvin–Veight fluids (14) are studied: global classical solvability on the semiaxis $\mathbb{R}^+$ initial boundary-value problem (14), (15) in the class $W^1_\infty(\mathbb{R}^+;W_2^2(\Omega)\cap H(\Omega))$; the principle of linearized stability and stability of steady solutions and time periodic solutions; global existence theorem of time periodic solutions of equations (14) in the class $W^1_\infty(\mathbb{R}^+;W_2^2(\Omega)\cap H(\Omega))$ with time periodic external force $f(x,t)\in L_\infty(\mathbb{R}^+;L_2(\Omega))$.
@article{ZNSL_1990_181_a5,
     author = {A. P. Oskolkov and R. D. Shadiev},
     title = {Nonlocal problems of the theory of the equations of motion for {Kelvin--Voight} fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--185},
     publisher = {mathdoc},
     volume = {181},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a5/}
}
TY  - JOUR
AU  - A. P. Oskolkov
AU  - R. D. Shadiev
TI  - Nonlocal problems of the theory of the equations of motion for Kelvin--Voight fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 146
EP  - 185
VL  - 181
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a5/
LA  - ru
ID  - ZNSL_1990_181_a5
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%A R. D. Shadiev
%T Nonlocal problems of the theory of the equations of motion for Kelvin--Voight fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 146-185
%V 181
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a5/
%G ru
%F ZNSL_1990_181_a5
A. P. Oskolkov; R. D. Shadiev. Nonlocal problems of the theory of the equations of motion for Kelvin--Voight fluids. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 11, Tome 181 (1990), pp. 146-185. http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a5/