Factor-representations of the infinite spin-symmetric group
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 11, Tome 181 (1990), pp. 132-145
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $S(\infty)$ be the group of finitary permutations of the sequence of natural numbers. The infinite spin-symmetric group is its central $\mathbb{Z}_2$-extension. This extension linearizes projective representations of the group $S(\infty)$. In this article factor-representations of $\mathrm{II}_1$-type of the group $T(\infty)$ are described.
			
            
            
            
          
        
      @article{ZNSL_1990_181_a4,
     author = {M. L. Nazarov},
     title = {Factor-representations of the infinite spin-symmetric group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {132--145},
     publisher = {mathdoc},
     volume = {181},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a4/}
}
                      
                      
                    M. L. Nazarov. Factor-representations of the infinite spin-symmetric group. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 11, Tome 181 (1990), pp. 132-145. http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a4/