Factor-representations of the infinite spin-symmetric group
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 11, Tome 181 (1990), pp. 132-145
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $S(\infty)$ be the group of finitary permutations of the sequence of natural numbers. The infinite spin-symmetric group is its central $\mathbb{Z}_2$-extension. This extension linearizes projective representations of the group $S(\infty)$. In this article factor-representations of $\mathrm{II}_1$-type of the group $T(\infty)$ are described.
@article{ZNSL_1990_181_a4,
author = {M. L. Nazarov},
title = {Factor-representations of the infinite spin-symmetric group},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {132--145},
year = {1990},
volume = {181},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a4/}
}
M. L. Nazarov. Factor-representations of the infinite spin-symmetric group. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 11, Tome 181 (1990), pp. 132-145. http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a4/