Factor-representations of the infinite spin-symmetric group
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 11, Tome 181 (1990), pp. 132-145

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S(\infty)$ be the group of finitary permutations of the sequence of natural numbers. The infinite spin-symmetric group is its central $\mathbb{Z}_2$-extension. This extension linearizes projective representations of the group $S(\infty)$. In this article factor-representations of $\mathrm{II}_1$-type of the group $T(\infty)$ are described.
@article{ZNSL_1990_181_a4,
     author = {M. L. Nazarov},
     title = {Factor-representations of the infinite spin-symmetric group},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {132--145},
     publisher = {mathdoc},
     volume = {181},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a4/}
}
TY  - JOUR
AU  - M. L. Nazarov
TI  - Factor-representations of the infinite spin-symmetric group
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 132
EP  - 145
VL  - 181
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a4/
LA  - ru
ID  - ZNSL_1990_181_a4
ER  - 
%0 Journal Article
%A M. L. Nazarov
%T Factor-representations of the infinite spin-symmetric group
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 132-145
%V 181
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a4/
%G ru
%F ZNSL_1990_181_a4
M. L. Nazarov. Factor-representations of the infinite spin-symmetric group. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 11, Tome 181 (1990), pp. 132-145. http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a4/