The isomonodromic deformations and similarity solutions of the Einstein--Maxwell equations
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 11, Tome 181 (1990), pp. 65-92

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that self-similar solutions of the Einstein-Maxwell equations in the axially symmetric case describe isomonodromic deformations of ordinary differential equations with rational coefficients. New types of these solutions that expressed in terms of fifth Painleve trancedent are found.
@article{ZNSL_1990_181_a2,
     author = {A. V. Kitaev},
     title = {The isomonodromic deformations and similarity solutions of the {Einstein--Maxwell} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {65--92},
     publisher = {mathdoc},
     volume = {181},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a2/}
}
TY  - JOUR
AU  - A. V. Kitaev
TI  - The isomonodromic deformations and similarity solutions of the Einstein--Maxwell equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 65
EP  - 92
VL  - 181
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a2/
LA  - ru
ID  - ZNSL_1990_181_a2
ER  - 
%0 Journal Article
%A A. V. Kitaev
%T The isomonodromic deformations and similarity solutions of the Einstein--Maxwell equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 65-92
%V 181
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a2/
%G ru
%F ZNSL_1990_181_a2
A. V. Kitaev. The isomonodromic deformations and similarity solutions of the Einstein--Maxwell equations. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 11, Tome 181 (1990), pp. 65-92. http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a2/