The Cauchy problem for a semilinear wave equation.~III
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 11, Tome 181 (1990), pp. 24-64
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Cauchy problem for a semilinear pseudodifferential
second order hyperbolic equation of the form
$$
\frac{\partial^2}{\partial t^2}u(t,x)+iB(t)\frac\partial{\partial t}u(t,x)+A(t)u(t,x)+f(t,x;u(t,x))=0
$$
is studied. The results (presented in a previous author's paper,
see Zapisky Nauch. Semin. LOMI, 1990, v. 182) on the existence and
uniqueness of the global weak (energy class) solutions are
revised. In the case of more regular initial data ($u(0,\cdot)\in H^{s+1}$, $\partial_t u(0,\cdot)\in H^s$, $0$)
the respective regularity of weak solutions is proved.
			
            
            
            
          
        
      @article{ZNSL_1990_181_a1,
     author = {L. V. Kapitanskii},
     title = {The {Cauchy} problem for a semilinear wave {equation.~III}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {24--64},
     publisher = {mathdoc},
     volume = {181},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a1/}
}
                      
                      
                    L. V. Kapitanskii. The Cauchy problem for a semilinear wave equation.~III. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 11, Tome 181 (1990), pp. 24-64. http://geodesic.mathdoc.fr/item/ZNSL_1990_181_a1/