Asymptotical stability and time periodicity of “small” solutions of the equations of motion of Oldroyd type fluids and Kelvin–Voight type fluids
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 9, Tome 180 (1990), pp. 63-75 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Asymptotical stability and time periodicity of “small” smooth solutions of the equations (1) and (2) described of the motions of Oldroyd type fluids and Kelvin–Voight type fluids is proved.
@article{ZNSL_1990_180_a7,
     author = {A. A. Kotsiolis and A. P. Oskolkov and R. Shadiev},
     title = {Asymptotical stability and time periodicity of {\textquotedblleft}small{\textquotedblright} solutions of the equations of motion of {Oldroyd} type fluids and {Kelvin{\textendash}Voight} type fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {63--75},
     year = {1990},
     volume = {180},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a7/}
}
TY  - JOUR
AU  - A. A. Kotsiolis
AU  - A. P. Oskolkov
AU  - R. Shadiev
TI  - Asymptotical stability and time periodicity of “small” solutions of the equations of motion of Oldroyd type fluids and Kelvin–Voight type fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 63
EP  - 75
VL  - 180
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a7/
LA  - ru
ID  - ZNSL_1990_180_a7
ER  - 
%0 Journal Article
%A A. A. Kotsiolis
%A A. P. Oskolkov
%A R. Shadiev
%T Asymptotical stability and time periodicity of “small” solutions of the equations of motion of Oldroyd type fluids and Kelvin–Voight type fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 63-75
%V 180
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a7/
%G ru
%F ZNSL_1990_180_a7
A. A. Kotsiolis; A. P. Oskolkov; R. Shadiev. Asymptotical stability and time periodicity of “small” solutions of the equations of motion of Oldroyd type fluids and Kelvin–Voight type fluids. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 9, Tome 180 (1990), pp. 63-75. http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a7/