Asymptotical stability and time periodicity of ``small'' solutions of the equations of motion of Oldroyd type fluids and Kelvin--Voight type fluids
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 9, Tome 180 (1990), pp. 63-75

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotical stability and time periodicity of “small” smooth solutions of the equations (1) and (2) described of the motions of Oldroyd type fluids and Kelvin–Voight type fluids is proved.
@article{ZNSL_1990_180_a7,
     author = {A. A. Kotsiolis and A. P. Oskolkov and R. Shadiev},
     title = {Asymptotical stability and time periodicity of ``small'' solutions of the equations of motion of {Oldroyd} type fluids and {Kelvin--Voight} type fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {63--75},
     publisher = {mathdoc},
     volume = {180},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a7/}
}
TY  - JOUR
AU  - A. A. Kotsiolis
AU  - A. P. Oskolkov
AU  - R. Shadiev
TI  - Asymptotical stability and time periodicity of ``small'' solutions of the equations of motion of Oldroyd type fluids and Kelvin--Voight type fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 63
EP  - 75
VL  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a7/
LA  - ru
ID  - ZNSL_1990_180_a7
ER  - 
%0 Journal Article
%A A. A. Kotsiolis
%A A. P. Oskolkov
%A R. Shadiev
%T Asymptotical stability and time periodicity of ``small'' solutions of the equations of motion of Oldroyd type fluids and Kelvin--Voight type fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 63-75
%V 180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a7/
%G ru
%F ZNSL_1990_180_a7
A. A. Kotsiolis; A. P. Oskolkov; R. Shadiev. Asymptotical stability and time periodicity of ``small'' solutions of the equations of motion of Oldroyd type fluids and Kelvin--Voight type fluids. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 9, Tome 180 (1990), pp. 63-75. http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a7/