Asymptotical stability and time periodicity of ``small'' solutions of the equations of motion of Oldroyd type fluids and Kelvin--Voight type fluids
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 9, Tome 180 (1990), pp. 63-75
Voir la notice de l'article provenant de la source Math-Net.Ru
Asymptotical stability and time periodicity of “small” smooth solutions of the equations (1) and (2) described of the motions of Oldroyd type fluids and Kelvin–Voight type fluids is proved.
@article{ZNSL_1990_180_a7,
author = {A. A. Kotsiolis and A. P. Oskolkov and R. Shadiev},
title = {Asymptotical stability and time periodicity of ``small'' solutions of the equations of motion of {Oldroyd} type fluids and {Kelvin--Voight} type fluids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {63--75},
publisher = {mathdoc},
volume = {180},
year = {1990},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a7/}
}
TY - JOUR AU - A. A. Kotsiolis AU - A. P. Oskolkov AU - R. Shadiev TI - Asymptotical stability and time periodicity of ``small'' solutions of the equations of motion of Oldroyd type fluids and Kelvin--Voight type fluids JO - Zapiski Nauchnykh Seminarov POMI PY - 1990 SP - 63 EP - 75 VL - 180 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a7/ LA - ru ID - ZNSL_1990_180_a7 ER -
%0 Journal Article %A A. A. Kotsiolis %A A. P. Oskolkov %A R. Shadiev %T Asymptotical stability and time periodicity of ``small'' solutions of the equations of motion of Oldroyd type fluids and Kelvin--Voight type fluids %J Zapiski Nauchnykh Seminarov POMI %D 1990 %P 63-75 %V 180 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a7/ %G ru %F ZNSL_1990_180_a7
A. A. Kotsiolis; A. P. Oskolkov; R. Shadiev. Asymptotical stability and time periodicity of ``small'' solutions of the equations of motion of Oldroyd type fluids and Kelvin--Voight type fluids. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 9, Tome 180 (1990), pp. 63-75. http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a7/