Geometric quantization as zero mass limit in the problem of
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 9, Tome 180 (1990), pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the quantum-mechanical problem of the point particle on the sphere with the magnetic monopole in the center in the zero mass limit is equivalent to the quantum theory with geometrical action defined by means of Kirillov–Kostant 2-form for the case of $SU(2)$ group.
@article{ZNSL_1990_180_a0,
     author = {A. Yu. Alekseev and D. V. Gluschenkov},
     title = {Geometric quantization as zero mass limit in the problem of},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {180},
     year = {1990},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a0/}
}
TY  - JOUR
AU  - A. Yu. Alekseev
AU  - D. V. Gluschenkov
TI  - Geometric quantization as zero mass limit in the problem of
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1990
SP  - 3
EP  - 8
VL  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a0/
LA  - ru
ID  - ZNSL_1990_180_a0
ER  - 
%0 Journal Article
%A A. Yu. Alekseev
%A D. V. Gluschenkov
%T Geometric quantization as zero mass limit in the problem of
%J Zapiski Nauchnykh Seminarov POMI
%D 1990
%P 3-8
%V 180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a0/
%G ru
%F ZNSL_1990_180_a0
A. Yu. Alekseev; D. V. Gluschenkov. Geometric quantization as zero mass limit in the problem of. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 9, Tome 180 (1990), pp. 3-8. http://geodesic.mathdoc.fr/item/ZNSL_1990_180_a0/