On the spectral mapping theorem for a one-parameter group of operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 18, Tome 178 (1989), pp. 146-150

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be the generator of a strongly continuous non-quasianalytic one-parameter group of operators $U(t)$ ($A$ can be unbounded). Then the spectral mapping theorem is established in the following form: $\sigma(U(t))=\overline{\exp(\sigma(A)t)}$.
@article{ZNSL_1989_178_a5,
     author = {Vu Quok Phong and Yu. I. Lyubich},
     title = {On the spectral mapping theorem for a one-parameter group of operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {146--150},
     publisher = {mathdoc},
     volume = {178},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a5/}
}
TY  - JOUR
AU  - Vu Quok Phong
AU  - Yu. I. Lyubich
TI  - On the spectral mapping theorem for a one-parameter group of operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1989
SP  - 146
EP  - 150
VL  - 178
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a5/
LA  - ru
ID  - ZNSL_1989_178_a5
ER  - 
%0 Journal Article
%A Vu Quok Phong
%A Yu. I. Lyubich
%T On the spectral mapping theorem for a one-parameter group of operators
%J Zapiski Nauchnykh Seminarov POMI
%D 1989
%P 146-150
%V 178
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a5/
%G ru
%F ZNSL_1989_178_a5
Vu Quok Phong; Yu. I. Lyubich. On the spectral mapping theorem for a one-parameter group of operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 18, Tome 178 (1989), pp. 146-150. http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a5/