On the spectral mapping theorem for a one-parameter group of operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 18, Tome 178 (1989), pp. 146-150
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be the generator of a strongly continuous non-quasianalytic one-parameter group of operators $U(t)$ ($A$ can be unbounded). Then the spectral mapping theorem is established in the following form: $\sigma(U(t))=\overline{\exp(\sigma(A)t)}$.
@article{ZNSL_1989_178_a5,
author = {Vu Quok Phong and Yu. I. Lyubich},
title = {On the spectral mapping theorem for a one-parameter group of operators},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {146--150},
publisher = {mathdoc},
volume = {178},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a5/}
}
TY - JOUR AU - Vu Quok Phong AU - Yu. I. Lyubich TI - On the spectral mapping theorem for a one-parameter group of operators JO - Zapiski Nauchnykh Seminarov POMI PY - 1989 SP - 146 EP - 150 VL - 178 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a5/ LA - ru ID - ZNSL_1989_178_a5 ER -
Vu Quok Phong; Yu. I. Lyubich. On the spectral mapping theorem for a one-parameter group of operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 18, Tome 178 (1989), pp. 146-150. http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a5/