Estimates for the difference of the fractional powers of self-adjoint operators under unbounded perturbations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 18, Tome 178 (1989), pp. 120-145
Voir la notice de l'article provenant de la source Math-Net.Ru
For positive self-adjoint operators $A_0$, $A_1$ on Hilbert
spaces $\mathcal{H}_0$, $\mathcal{H}_1$ and for an operator
$\mathcal{J}: \mathcal{H}_0\to\mathcal{H}_1$, the following
estimate is obtained:
$$
|\alpha^{-1}(A_1^\alpha\mathcal{J}-\mathcal{J}A_0^\alpha)|_\gamma\leqslant A_1^{-\delta}(A_1\mathcal{J}-\mathcal{J}A_0)A_0^{-\delta},\quad 2\delta=1-\alpha,\quad-1\alpha1.
$$
Here $|\cdot|_\gamma$ denotes the norm in some symmetric-normed operator
ideal $\gamma$. Some generalizations of this estimate are presented
too. Applications to the differential operators are discussed.
@article{ZNSL_1989_178_a4,
author = {M. Sh. Birman and M. Z. Solomyak},
title = {Estimates for the difference of the fractional powers of self-adjoint operators under unbounded perturbations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {120--145},
publisher = {mathdoc},
volume = {178},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a4/}
}
TY - JOUR AU - M. Sh. Birman AU - M. Z. Solomyak TI - Estimates for the difference of the fractional powers of self-adjoint operators under unbounded perturbations JO - Zapiski Nauchnykh Seminarov POMI PY - 1989 SP - 120 EP - 145 VL - 178 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a4/ LA - ru ID - ZNSL_1989_178_a4 ER -
%0 Journal Article %A M. Sh. Birman %A M. Z. Solomyak %T Estimates for the difference of the fractional powers of self-adjoint operators under unbounded perturbations %J Zapiski Nauchnykh Seminarov POMI %D 1989 %P 120-145 %V 178 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a4/ %G ru %F ZNSL_1989_178_a4
M. Sh. Birman; M. Z. Solomyak. Estimates for the difference of the fractional powers of self-adjoint operators under unbounded perturbations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 18, Tome 178 (1989), pp. 120-145. http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a4/