On the functional model for dissipative operators. The coordinate-free approach
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 18, Tome 178 (1989), pp. 57-91 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper is based on seminar talks and is mostly instructional. Dissipative operators are studied by means of their Caley transforms using the coordinate-free model for contractions developed by N. K. Nikolskii and V. I. Vasyunin. It is shown that different known froms of the characteristic functions and self-adjoint dilation can be derived from a general scheme. Also we find new formulae for the dilation and its eigen-functions which generalise those obtained by B. S. Pavlov for the Shrödinger operator on a half-line with a real-valued potential and a nonreal boundary condition. Several examples are considered.
@article{ZNSL_1989_178_a2,
     author = {B. M. Solomyak},
     title = {On the functional model for dissipative operators. {The} coordinate-free approach},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {57--91},
     year = {1989},
     volume = {178},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a2/}
}
TY  - JOUR
AU  - B. M. Solomyak
TI  - On the functional model for dissipative operators. The coordinate-free approach
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1989
SP  - 57
EP  - 91
VL  - 178
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a2/
LA  - ru
ID  - ZNSL_1989_178_a2
ER  - 
%0 Journal Article
%A B. M. Solomyak
%T On the functional model for dissipative operators. The coordinate-free approach
%J Zapiski Nauchnykh Seminarov POMI
%D 1989
%P 57-91
%V 178
%U http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a2/
%G ru
%F ZNSL_1989_178_a2
B. M. Solomyak. On the functional model for dissipative operators. The coordinate-free approach. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 18, Tome 178 (1989), pp. 57-91. http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a2/