Operator algebras and invariant subspaces lattices.~I
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 18, Tome 178 (1989), pp. 23-56

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a bounded linear operator $T$, we study the following questions: when the commutant $\{T\}'$ is commutative; when each operator in the bicomrautant $\{T\}''$ can be approximated by polynomials of $T$ in the weak operator topology, the problem of reflexivity and others. These questions are solved for some classes of operators.
@article{ZNSL_1989_178_a1,
     author = {V. V. Kapustin and A. V. Lipin},
     title = {Operator algebras and invariant subspaces {lattices.~I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {23--56},
     publisher = {mathdoc},
     volume = {178},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a1/}
}
TY  - JOUR
AU  - V. V. Kapustin
AU  - A. V. Lipin
TI  - Operator algebras and invariant subspaces lattices.~I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1989
SP  - 23
EP  - 56
VL  - 178
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a1/
LA  - ru
ID  - ZNSL_1989_178_a1
ER  - 
%0 Journal Article
%A V. V. Kapustin
%A A. V. Lipin
%T Operator algebras and invariant subspaces lattices.~I
%J Zapiski Nauchnykh Seminarov POMI
%D 1989
%P 23-56
%V 178
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a1/
%G ru
%F ZNSL_1989_178_a1
V. V. Kapustin; A. V. Lipin. Operator algebras and invariant subspaces lattices.~I. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 18, Tome 178 (1989), pp. 23-56. http://geodesic.mathdoc.fr/item/ZNSL_1989_178_a1/