A note on a extension of Kreisel's conjecture
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 4, Tome 176 (1989), pp. 118-126

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a theory $\mathfrak{R}$, let $\mathfrak{R}\vdash_lA$ means that $A$ is provable in $\mathfrak{R}$ in $l$ steps. Let $L^*$ be the first order language with a constant symbol $O$, a unary function symbol $'$, a binary predicate symbol $=$, ternary predicate symbols $P$ and $Q$. The theory in $L^*$ with the axioms $\mathbb{R}^*.1$$\mathbb{R}^*.13$ defined in §1 of this paper is denoted by $\mathbb{R}^*$. The Robinson arithmetic is obtained from $\mathbb{R}^*$ by replacing the predicate symbols $P$ and $Q$ by the function symbols $+$ and $\cdot$. Define $t^{(n)}$ as $n$-times iteration of $'$ starting with $t$. THEOREM. There is a natural number $c_1$ such that for any consistent extension $\mathfrak{A}$ of $\mathbb{R}^*$ there are a formula $A(a)$ and natural number $c_2$ with the following properties: 1) $\mathfrak{A}\not\vdash\forall x\,A(x)$, 2) for any natural number $n$ $$ \mathbb{R}^*\vdash_{c_1[\log_2(n+1)+c_2]}A(O^{(n)}). $$
@article{ZNSL_1989_176_a4,
     author = {V. P. Orevkov},
     title = {A note on a extension of {Kreisel's} conjecture},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {118--126},
     publisher = {mathdoc},
     volume = {176},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_176_a4/}
}
TY  - JOUR
AU  - V. P. Orevkov
TI  - A note on a extension of Kreisel's conjecture
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1989
SP  - 118
EP  - 126
VL  - 176
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1989_176_a4/
LA  - ru
ID  - ZNSL_1989_176_a4
ER  - 
%0 Journal Article
%A V. P. Orevkov
%T A note on a extension of Kreisel's conjecture
%J Zapiski Nauchnykh Seminarov POMI
%D 1989
%P 118-126
%V 176
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1989_176_a4/
%G ru
%F ZNSL_1989_176_a4
V. P. Orevkov. A note on a extension of Kreisel's conjecture. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 4, Tome 176 (1989), pp. 118-126. http://geodesic.mathdoc.fr/item/ZNSL_1989_176_a4/