A note on a extension of Kreisel's conjecture
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 4, Tome 176 (1989), pp. 118-126
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Given a theory  $\mathfrak{R}$, let $\mathfrak{R}\vdash_lA$ means that $A$ is provable in
$\mathfrak{R}$ in $l$ steps. Let $L^*$ be the first order language with a constant
symbol $O$, a unary function symbol $'$, a binary predicate
symbol $=$, ternary predicate symbols $P$ and $Q$. The theory in
$L^*$ with the axioms $\mathbb{R}^*.1$–$\mathbb{R}^*.13$ defined in §1 of this paper
is denoted by $\mathbb{R}^*$. The Robinson arithmetic is obtained from $\mathbb{R}^*$
by replacing the predicate symbols $P$ and $Q$ by the function symbols $+$
and $\cdot$. Define $t^{(n)}$ as $n$-times iteration of $'$ starting
with $t$.
THEOREM. There is a natural number $c_1$ such that for any consistent
extension $\mathfrak{A}$ of $\mathbb{R}^*$ there are a formula $A(a)$ and natural
number $c_2$ with the following properties: 1) $\mathfrak{A}\not\vdash\forall x\,A(x)$,
2) for any natural number $n$
$$
\mathbb{R}^*\vdash_{c_1[\log_2(n+1)+c_2]}A(O^{(n)}).
$$
            
            
            
          
        
      @article{ZNSL_1989_176_a4,
     author = {V. P. Orevkov},
     title = {A note on a extension of {Kreisel's} conjecture},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {118--126},
     publisher = {mathdoc},
     volume = {176},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_176_a4/}
}
                      
                      
                    V. P. Orevkov. A note on a extension of Kreisel's conjecture. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 4, Tome 176 (1989), pp. 118-126. http://geodesic.mathdoc.fr/item/ZNSL_1989_176_a4/
