Deciding consistency of systems of polynomial in exponent inequalities in subexponential time
Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 4, Tome 176 (1989), pp. 3-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let the polynomials $P_1,\dots,P_k\in\mathbb{Z}[U,X_1,\dots,X_n]$, $h\in\mathbb{Z}[X_1,\dots,X_n]$ have degrees $\mathrm{deg}_{U,X_1,\dots,X_n}(P_i)$, $\mathrm{deg}_{X_1,\dots,X_n}(h) and absolute value of any coefficient of $P_i$ or $h$ is less then or equal to $2^M$ for all $1\leqslant i\leqslant k$. An algorithm is described which recognises the consistency in $\mathbb{R}^n$ of the system of inequalities $f_1\geqslant0,\dots,f_{k_1}\geqslant0,f_{k_1+1}>0,\dots,f_k>0$ where $f_i(X_1,\dots,X_n)=P_i(e^{h(X_1,\dots,X_n)},X_1,\dots,X_n)$ within the time polynomial in $M$, $(nkd)^{n^4}$. This result is a generalization of the subexponential-time algorithms for deciding consistency of systems of polynomial inequalities, which were designed in [4], [5], [23] and can be considered also as a contribution to the solution of Tarski's decidability problem concerning the first order theory of reals with exponentiation [1].
@article{ZNSL_1989_176_a0,
     author = {N. N. Vorobjov (Jr.)},
     title = {Deciding consistency of systems of polynomial in exponent inequalities in subexponential time},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {3--52},
     year = {1989},
     volume = {176},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_176_a0/}
}
TY  - JOUR
AU  - N. N. Vorobjov (Jr.)
TI  - Deciding consistency of systems of polynomial in exponent inequalities in subexponential time
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1989
SP  - 3
EP  - 52
VL  - 176
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1989_176_a0/
LA  - ru
ID  - ZNSL_1989_176_a0
ER  - 
%0 Journal Article
%A N. N. Vorobjov (Jr.)
%T Deciding consistency of systems of polynomial in exponent inequalities in subexponential time
%J Zapiski Nauchnykh Seminarov POMI
%D 1989
%P 3-52
%V 176
%U http://geodesic.mathdoc.fr/item/ZNSL_1989_176_a0/
%G ru
%F ZNSL_1989_176_a0
N. N. Vorobjov (Jr.). Deciding consistency of systems of polynomial in exponent inequalities in subexponential time. Zapiski Nauchnykh Seminarov POMI, Computational complexity theory. Part 4, Tome 176 (1989), pp. 3-52. http://geodesic.mathdoc.fr/item/ZNSL_1989_176_a0/