Infinite series of Lie algebras and boundary conditions for integrable systems
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 10, Tome 172 (1989), pp. 88-98
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct and study some new representations of the quadratic $R$-matrix algebras in classical and in quantum mechanics which are related to the Toda lattices associated with the classical simple Lie algebras. A new Lax representation for the Manakov top is presented. A dynamical $SO(2,1)$ algebra suited for the study of the adjoint Mathieu functions is constructed.
@article{ZNSL_1989_172_a6,
author = {V. B. Kuznetsov and A. V. Tsiganov},
title = {Infinite series of {Lie} algebras and boundary conditions for integrable systems},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {88--98},
publisher = {mathdoc},
volume = {172},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_172_a6/}
}
TY - JOUR AU - V. B. Kuznetsov AU - A. V. Tsiganov TI - Infinite series of Lie algebras and boundary conditions for integrable systems JO - Zapiski Nauchnykh Seminarov POMI PY - 1989 SP - 88 EP - 98 VL - 172 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1989_172_a6/ LA - ru ID - ZNSL_1989_172_a6 ER -
V. B. Kuznetsov; A. V. Tsiganov. Infinite series of Lie algebras and boundary conditions for integrable systems. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 10, Tome 172 (1989), pp. 88-98. http://geodesic.mathdoc.fr/item/ZNSL_1989_172_a6/