Infinite series of Lie algebras and boundary conditions for integrable systems
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 10, Tome 172 (1989), pp. 88-98

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and study some new representations of the quadratic $R$-matrix algebras in classical and in quantum mechanics which are related to the Toda lattices associated with the classical simple Lie algebras. A new Lax representation for the Manakov top is presented. A dynamical $SO(2,1)$ algebra suited for the study of the adjoint Mathieu functions is constructed.
@article{ZNSL_1989_172_a6,
     author = {V. B. Kuznetsov and A. V. Tsiganov},
     title = {Infinite series of {Lie} algebras and boundary conditions for integrable systems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--98},
     publisher = {mathdoc},
     volume = {172},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_172_a6/}
}
TY  - JOUR
AU  - V. B. Kuznetsov
AU  - A. V. Tsiganov
TI  - Infinite series of Lie algebras and boundary conditions for integrable systems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1989
SP  - 88
EP  - 98
VL  - 172
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1989_172_a6/
LA  - ru
ID  - ZNSL_1989_172_a6
ER  - 
%0 Journal Article
%A V. B. Kuznetsov
%A A. V. Tsiganov
%T Infinite series of Lie algebras and boundary conditions for integrable systems
%J Zapiski Nauchnykh Seminarov POMI
%D 1989
%P 88-98
%V 172
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1989_172_a6/
%G ru
%F ZNSL_1989_172_a6
V. B. Kuznetsov; A. V. Tsiganov. Infinite series of Lie algebras and boundary conditions for integrable systems. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 10, Tome 172 (1989), pp. 88-98. http://geodesic.mathdoc.fr/item/ZNSL_1989_172_a6/