The invariants algebra for the action of $Sp(2m)$ in $\bigotimes\limits^\infty M_{2m}\mathbb{C}$
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 10, Tome 172 (1989), pp. 68-77
Voir la notice de l'article provenant de la source Math-Net.Ru
Methods introduced by the author and A. M. Vershik are used to compute the traces and the dimensions group of the subalgebra of $Sp(2m)$-invariants in $\bigotimes\limits^\infty M_{2m}\mathbb{C}$.
@article{ZNSL_1989_172_a4,
author = {S. V. Kerov},
title = {The invariants algebra for the action of $Sp(2m)$ in $\bigotimes\limits^\infty M_{2m}\mathbb{C}$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {68--77},
publisher = {mathdoc},
volume = {172},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_172_a4/}
}
TY - JOUR
AU - S. V. Kerov
TI - The invariants algebra for the action of $Sp(2m)$ in $\bigotimes\limits^\infty M_{2m}\mathbb{C}$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 1989
SP - 68
EP - 77
VL - 172
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_1989_172_a4/
LA - ru
ID - ZNSL_1989_172_a4
ER -
S. V. Kerov. The invariants algebra for the action of $Sp(2m)$ in $\bigotimes\limits^\infty M_{2m}\mathbb{C}$. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 10, Tome 172 (1989), pp. 68-77. http://geodesic.mathdoc.fr/item/ZNSL_1989_172_a4/