On the solutions of the classical triangle equation related to the Landau--Lifschitz equation for non-homogeneous magnetics
Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 10, Tome 172 (1989), pp. 130-136
Voir la notice de l'article provenant de la source Math-Net.Ru
A method due to Drinfeld and Belavin is used to construct deformations of classical $r$-matrices on semi-simple Lie algebras $\bigoplus\limits^N SU(2)$. These $r$-matrices are related to multi-component analogues of the Landau–Lifschitz equations which may be interpreted as models of one-dimensional magnets with several sublattices.
@article{ZNSL_1989_172_a11,
author = {V. Yu. Popkov},
title = {On the solutions of the classical triangle equation related to the {Landau--Lifschitz} equation for non-homogeneous magnetics},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {130--136},
publisher = {mathdoc},
volume = {172},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_172_a11/}
}
TY - JOUR AU - V. Yu. Popkov TI - On the solutions of the classical triangle equation related to the Landau--Lifschitz equation for non-homogeneous magnetics JO - Zapiski Nauchnykh Seminarov POMI PY - 1989 SP - 130 EP - 136 VL - 172 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1989_172_a11/ LA - ru ID - ZNSL_1989_172_a11 ER -
%0 Journal Article %A V. Yu. Popkov %T On the solutions of the classical triangle equation related to the Landau--Lifschitz equation for non-homogeneous magnetics %J Zapiski Nauchnykh Seminarov POMI %D 1989 %P 130-136 %V 172 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1989_172_a11/ %G ru %F ZNSL_1989_172_a11
V. Yu. Popkov. On the solutions of the classical triangle equation related to the Landau--Lifschitz equation for non-homogeneous magnetics. Zapiski Nauchnykh Seminarov POMI, Differential geometry, Lie groups and mechanics. Part 10, Tome 172 (1989), pp. 130-136. http://geodesic.mathdoc.fr/item/ZNSL_1989_172_a11/