On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Tome 171 (1989), pp. 174-181
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for nonstationary equations of motions of
linear viscoelastic fluids which obey the reological equation
$$
\left(1+\sum_{l=1}^L\lambda_l\frac{\partial^l}{\partial t^l}\right)\sigma=2\nu\left(1+\sum_{m=1}^M x_m\nu^{-1}\frac{\partial^m}{\partial t^m}\right)D,
$$
the stationary system is the stationary Navier–Stokes system
$$
-\nu\Delta v+v_k\frac{\partial v}{\partial x_k}+\mathrm{grad}\, p=f(x), \quad\mathrm{div}\, v=0.\qquad{(*)}
$$
It is proved that for “small” Reynolds numbers solutions of
the initial boundary-value problems for the equations of motions
of Oldroyd type fluids ($M=L=1,2,\dots$) and Kelvin–Voight type fluids
($M=L+1$, $L=0,1,2,\dots$) fends for $t\to\infty$ to the solution of the
boundary-value problem for the stationary Navier–Stokes system ($*$).
@article{ZNSL_1989_171_a8,
author = {A. P. Oskolkov},
title = {On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {174--181},
publisher = {mathdoc},
volume = {171},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a8/}
}
TY - JOUR AU - A. P. Oskolkov TI - On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids JO - Zapiski Nauchnykh Seminarov POMI PY - 1989 SP - 174 EP - 181 VL - 171 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a8/ LA - ru ID - ZNSL_1989_171_a8 ER -
%0 Journal Article %A A. P. Oskolkov %T On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids %J Zapiski Nauchnykh Seminarov POMI %D 1989 %P 174-181 %V 171 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a8/ %G ru %F ZNSL_1989_171_a8
A. P. Oskolkov. On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Tome 171 (1989), pp. 174-181. http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a8/