On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Tome 171 (1989), pp. 174-181

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for nonstationary equations of motions of linear viscoelastic fluids which obey the reological equation $$ \left(1+\sum_{l=1}^L\lambda_l\frac{\partial^l}{\partial t^l}\right)\sigma=2\nu\left(1+\sum_{m=1}^M x_m\nu^{-1}\frac{\partial^m}{\partial t^m}\right)D, $$ the stationary system is the stationary Navier–Stokes system $$ -\nu\Delta v+v_k\frac{\partial v}{\partial x_k}+\mathrm{grad}\, p=f(x), \quad\mathrm{div}\, v=0.\qquad{(*)} $$ It is proved that for “small” Reynolds numbers solutions of the initial boundary-value problems for the equations of motions of Oldroyd type fluids ($M=L=1,2,\dots$) and Kelvin–Voight type fluids ($M=L+1$, $L=0,1,2,\dots$) fends for $t\to\infty$ to the solution of the boundary-value problem for the stationary Navier–Stokes system ($*$).
@article{ZNSL_1989_171_a8,
     author = {A. P. Oskolkov},
     title = {On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {174--181},
     publisher = {mathdoc},
     volume = {171},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a8/}
}
TY  - JOUR
AU  - A. P. Oskolkov
TI  - On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1989
SP  - 174
EP  - 181
VL  - 171
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a8/
LA  - ru
ID  - ZNSL_1989_171_a8
ER  - 
%0 Journal Article
%A A. P. Oskolkov
%T On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids
%J Zapiski Nauchnykh Seminarov POMI
%D 1989
%P 174-181
%V 171
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a8/
%G ru
%F ZNSL_1989_171_a8
A. P. Oskolkov. On the asymptotical behaviour for $t\to\infty$ of solutions of initial boundary-value problems for the equations of motions of linear viscoelastic fluids. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Tome 171 (1989), pp. 174-181. http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a8/