Attractors for the quasilinear second order parabolic equations of general form
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Tome 171 (1989), pp. 163-173

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of existence of compact minimal global $B$-attractors and their properties are investigated for the quasilinear second order parabolic equations of general form in bounded domains under Dirichlet boundary condition.
@article{ZNSL_1989_171_a7,
     author = {O. A. Ladyzhenskaya},
     title = {Attractors for the quasilinear second order parabolic equations of general form},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {163--173},
     publisher = {mathdoc},
     volume = {171},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a7/}
}
TY  - JOUR
AU  - O. A. Ladyzhenskaya
TI  - Attractors for the quasilinear second order parabolic equations of general form
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1989
SP  - 163
EP  - 173
VL  - 171
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a7/
LA  - ru
ID  - ZNSL_1989_171_a7
ER  - 
%0 Journal Article
%A O. A. Ladyzhenskaya
%T Attractors for the quasilinear second order parabolic equations of general form
%J Zapiski Nauchnykh Seminarov POMI
%D 1989
%P 163-173
%V 171
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a7/
%G ru
%F ZNSL_1989_171_a7
O. A. Ladyzhenskaya. Attractors for the quasilinear second order parabolic equations of general form. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Tome 171 (1989), pp. 163-173. http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a7/