Hölder estimates for quesilinear doubly degenerate parabolic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Tome 171 (1989), pp. 70-105
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we establish local Hölder estimates of weak solutions of degenerate parabolic equation of the form $$ \frac{\partial u}{\partial t}-\frac{\partial}{\partial x_i}\left\{a_0|u|^{\sigma(m-1)}|\nabla u|^{m-2}\frac{\partial u}{\partial x_i}\right\}=0,\quad \sigma\geqslant 0,\quad m\geqslant2. $$
@article{ZNSL_1989_171_a5,
author = {A. V. Ivanov},
title = {H\"older estimates for quesilinear doubly degenerate parabolic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {70--105},
year = {1989},
volume = {171},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a5/}
}
A. V. Ivanov. Hölder estimates for quesilinear doubly degenerate parabolic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Tome 171 (1989), pp. 70-105. http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a5/