On the existence of smooth solutions for parabolic sistems with convex constraints on the boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Tome 171 (1989), pp. 5-11
Cet article a éte moissonné depuis la source Math-Net.Ru
The existence of the smooth solution for the convex boundary — constrained problem is prooved. Parabolic operator has diagonal form and quadratic growth for gradient. This solution has maximal possible regularity for the boundary obstacle problems.
@article{ZNSL_1989_171_a0,
author = {A. A. Arkhipova and N. N. Uraltseva},
title = {On the existence of smooth solutions for parabolic sistems with convex constraints on the boundary},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--11},
year = {1989},
volume = {171},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a0/}
}
TY - JOUR AU - A. A. Arkhipova AU - N. N. Uraltseva TI - On the existence of smooth solutions for parabolic sistems with convex constraints on the boundary JO - Zapiski Nauchnykh Seminarov POMI PY - 1989 SP - 5 EP - 11 VL - 171 UR - http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a0/ LA - ru ID - ZNSL_1989_171_a0 ER -
A. A. Arkhipova; N. N. Uraltseva. On the existence of smooth solutions for parabolic sistems with convex constraints on the boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Tome 171 (1989), pp. 5-11. http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a0/