On the existence of smooth solutions for parabolic sistems with convex constraints on the boundary
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Tome 171 (1989), pp. 5-11

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of the smooth solution for the convex boundary — constrained problem is prooved. Parabolic operator has diagonal form and quadratic growth for gradient. This solution has maximal possible regularity for the boundary obstacle problems.
@article{ZNSL_1989_171_a0,
     author = {A. A. Arkhipova and N. N. Uraltseva},
     title = {On the existence of smooth solutions for parabolic sistems with convex constraints on the boundary},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--11},
     publisher = {mathdoc},
     volume = {171},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a0/}
}
TY  - JOUR
AU  - A. A. Arkhipova
AU  - N. N. Uraltseva
TI  - On the existence of smooth solutions for parabolic sistems with convex constraints on the boundary
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1989
SP  - 5
EP  - 11
VL  - 171
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a0/
LA  - ru
ID  - ZNSL_1989_171_a0
ER  - 
%0 Journal Article
%A A. A. Arkhipova
%A N. N. Uraltseva
%T On the existence of smooth solutions for parabolic sistems with convex constraints on the boundary
%J Zapiski Nauchnykh Seminarov POMI
%D 1989
%P 5-11
%V 171
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a0/
%G ru
%F ZNSL_1989_171_a0
A. A. Arkhipova; N. N. Uraltseva. On the existence of smooth solutions for parabolic sistems with convex constraints on the boundary. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 20, Tome 171 (1989), pp. 5-11. http://geodesic.mathdoc.fr/item/ZNSL_1989_171_a0/