On classes of functions subharmonic in $\mathbb{R}^m$ which are bounded on certain sets
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 17, Tome 170 (1989), pp. 157-175

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Z_j$ be Euclidean spaces of vectors $z_j=(z_{j,1},\dots,z_{j,n_j+1})$, $Z=\bigoplus\limits_{j=1}^pZ_j$, $X=\bigoplus\limits_{j=1}^p(z_{j,1},\dots,z_{j,n_j})$. A function $u:Z\to\mathbb{R}_+$, $u\not\equiv0$, is called logarithmically $p$-subharmonic, if $\log u(z)$ is upper semicontinuous and for any $j$ and for any $z_k$, $k\ne j$, either the function $z_j\to\log u(z_1,\dots,z_p)$ is subharmonic or $\log u(z_1,\dots,z_p)\equiv-\infty$. For such functions $u$ that satisfy the growth estimate $$ \log u(z)\leqslant\sigma\prod_{j=1}^p(1+|z_{j,n_j+1}|)+N\left(\sum_{\substack{1\leqslant j\leqslant p\\ 1\leqslant k\leqslant n_j}} z_{j,k}^2\right)^{1/2}+c,\quad \sigma, N\geqslant0,\quad c\in\mathbb{R}, $$ theorems are proved about the equivalence of $L^\infty(L^q)$-norm of restrictions $u\mid X$ and $u\mid E$ for some relatively dense subset $E$ of $X$. These theorems generalize well-known results of Cartwright and Plancherel–Polya.
@article{ZNSL_1989_170_a8,
     author = {B. Ya. Levin and V. N. Logvinenko},
     title = {On classes of functions subharmonic in $\mathbb{R}^m$ which are bounded on certain sets},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {157--175},
     publisher = {mathdoc},
     volume = {170},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a8/}
}
TY  - JOUR
AU  - B. Ya. Levin
AU  - V. N. Logvinenko
TI  - On classes of functions subharmonic in $\mathbb{R}^m$ which are bounded on certain sets
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1989
SP  - 157
EP  - 175
VL  - 170
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a8/
LA  - ru
ID  - ZNSL_1989_170_a8
ER  - 
%0 Journal Article
%A B. Ya. Levin
%A V. N. Logvinenko
%T On classes of functions subharmonic in $\mathbb{R}^m$ which are bounded on certain sets
%J Zapiski Nauchnykh Seminarov POMI
%D 1989
%P 157-175
%V 170
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a8/
%G ru
%F ZNSL_1989_170_a8
B. Ya. Levin; V. N. Logvinenko. On classes of functions subharmonic in $\mathbb{R}^m$ which are bounded on certain sets. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 17, Tome 170 (1989), pp. 157-175. http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a8/