Poisson kernel is the only approximative identity asymptotically multiplicative on $H^\infty$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 17, Tome 170 (1989), pp. 82-89

Voir la notice de l'article provenant de la source Math-Net.Ru

Every approximative identity asymptotically multiplicative with respect to $H^\infty(\mathbb{R})$ (or to $H^\infty(\mathbb{T})$) is necessarily a shift and a contraction of the Poisson kernel.
@article{ZNSL_1989_170_a4,
     author = {H. Wolf and V. P. Havin},
     title = {Poisson kernel is the only approximative identity asymptotically multiplicative on $H^\infty$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {82--89},
     publisher = {mathdoc},
     volume = {170},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a4/}
}
TY  - JOUR
AU  - H. Wolf
AU  - V. P. Havin
TI  - Poisson kernel is the only approximative identity asymptotically multiplicative on $H^\infty$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1989
SP  - 82
EP  - 89
VL  - 170
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a4/
LA  - ru
ID  - ZNSL_1989_170_a4
ER  - 
%0 Journal Article
%A H. Wolf
%A V. P. Havin
%T Poisson kernel is the only approximative identity asymptotically multiplicative on $H^\infty$
%J Zapiski Nauchnykh Seminarov POMI
%D 1989
%P 82-89
%V 170
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a4/
%G ru
%F ZNSL_1989_170_a4
H. Wolf; V. P. Havin. Poisson kernel is the only approximative identity asymptotically multiplicative on $H^\infty$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 17, Tome 170 (1989), pp. 82-89. http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a4/