Poisson kernel is the only approximative identity asymptotically multiplicative on $H^\infty$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 17, Tome 170 (1989), pp. 82-89
Voir la notice de l'article provenant de la source Math-Net.Ru
Every approximative identity asymptotically multiplicative with respect to $H^\infty(\mathbb{R})$ (or to $H^\infty(\mathbb{T})$) is necessarily a shift and a contraction of the Poisson kernel.
@article{ZNSL_1989_170_a4,
author = {H. Wolf and V. P. Havin},
title = {Poisson kernel is the only approximative identity asymptotically multiplicative on $H^\infty$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {82--89},
publisher = {mathdoc},
volume = {170},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a4/}
}
TY - JOUR AU - H. Wolf AU - V. P. Havin TI - Poisson kernel is the only approximative identity asymptotically multiplicative on $H^\infty$ JO - Zapiski Nauchnykh Seminarov POMI PY - 1989 SP - 82 EP - 89 VL - 170 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a4/ LA - ru ID - ZNSL_1989_170_a4 ER -
H. Wolf; V. P. Havin. Poisson kernel is the only approximative identity asymptotically multiplicative on $H^\infty$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 17, Tome 170 (1989), pp. 82-89. http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a4/