Inner functions and spaces of pseudocontinuable functions related to them
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 17, Tome 170 (1989), pp. 7-33
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\theta$ be an inner function; $\alpha\in\mathbb{C}$, $|\alpha|=1$. Then the harmonic function $\mathop{\mathrm{Re}}\frac{\alpha+\theta}{\alpha-\theta}$ is the Poisson integral of a singular measure $\sigma_\alpha$. The Clark theorem allows naturally to identify $H^2\ominus\theta H^2$ with $L^2(\sigma_\alpha)$. The aim of this paper is to investigate $L^p$-properties of this identification operator for $p\ne2$.
@article{ZNSL_1989_170_a1,
author = {A. B. Aleksandrov},
title = {Inner functions and spaces of pseudocontinuable functions related to them},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {7--33},
publisher = {mathdoc},
volume = {170},
year = {1989},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a1/}
}
A. B. Aleksandrov. Inner functions and spaces of pseudocontinuable functions related to them. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 17, Tome 170 (1989), pp. 7-33. http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a1/