Inner functions and spaces of pseudocontinuable functions related to them
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 17, Tome 170 (1989), pp. 7-33

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\theta$ be an inner function; $\alpha\in\mathbb{C}$, $|\alpha|=1$. Then the harmonic function $\mathop{\mathrm{Re}}\frac{\alpha+\theta}{\alpha-\theta}$ is the Poisson integral of a singular measure $\sigma_\alpha$. The Clark theorem allows naturally to identify $H^2\ominus\theta H^2$ with $L^2(\sigma_\alpha)$. The aim of this paper is to investigate $L^p$-properties of this identification operator for $p\ne2$.
@article{ZNSL_1989_170_a1,
     author = {A. B. Aleksandrov},
     title = {Inner functions and spaces of pseudocontinuable functions related to them},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {7--33},
     publisher = {mathdoc},
     volume = {170},
     year = {1989},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a1/}
}
TY  - JOUR
AU  - A. B. Aleksandrov
TI  - Inner functions and spaces of pseudocontinuable functions related to them
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1989
SP  - 7
EP  - 33
VL  - 170
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a1/
LA  - ru
ID  - ZNSL_1989_170_a1
ER  - 
%0 Journal Article
%A A. B. Aleksandrov
%T Inner functions and spaces of pseudocontinuable functions related to them
%J Zapiski Nauchnykh Seminarov POMI
%D 1989
%P 7-33
%V 170
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a1/
%G ru
%F ZNSL_1989_170_a1
A. B. Aleksandrov. Inner functions and spaces of pseudocontinuable functions related to them. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 17, Tome 170 (1989), pp. 7-33. http://geodesic.mathdoc.fr/item/ZNSL_1989_170_a1/