To the Kac problem of a reconstruction of the area shape by the spectrum of the Dirichlet problem
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 18, Tome 173 (1988), pp. 30-41

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse problem of M. Kac is considered. The procedure of a reconstruction of a area shape is described for the wide class of convex areas. This result can be generalized on some classes of nonconvex areas.
@article{ZNSL_1988_173_a2,
     author = {M. I. Belishev},
     title = {To the {Kac} problem of a reconstruction of the area shape by the spectrum of the {Dirichlet} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {30--41},
     publisher = {mathdoc},
     volume = {173},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_173_a2/}
}
TY  - JOUR
AU  - M. I. Belishev
TI  - To the Kac problem of a reconstruction of the area shape by the spectrum of the Dirichlet problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1988
SP  - 30
EP  - 41
VL  - 173
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1988_173_a2/
LA  - ru
ID  - ZNSL_1988_173_a2
ER  - 
%0 Journal Article
%A M. I. Belishev
%T To the Kac problem of a reconstruction of the area shape by the spectrum of the Dirichlet problem
%J Zapiski Nauchnykh Seminarov POMI
%D 1988
%P 30-41
%V 173
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1988_173_a2/
%G ru
%F ZNSL_1988_173_a2
M. I. Belishev. To the Kac problem of a reconstruction of the area shape by the spectrum of the Dirichlet problem. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 18, Tome 173 (1988), pp. 30-41. http://geodesic.mathdoc.fr/item/ZNSL_1988_173_a2/