Diffraction of the plane waves on conical obstacles
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 18, Tome 173 (1988), pp. 142-154

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of diffraction of a plane wave on conical obstacle of rather orbitrary cross-section is considered. Construction of a solution in the form of the Watson integral and its further investigation allowes to derive some formulas describing spherical waves diffracted by the vertex of a cone.
@article{ZNSL_1988_173_a12,
     author = {V. P. Smyshlyaev},
     title = {Diffraction of the plane waves on conical obstacles},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {142--154},
     publisher = {mathdoc},
     volume = {173},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_173_a12/}
}
TY  - JOUR
AU  - V. P. Smyshlyaev
TI  - Diffraction of the plane waves on conical obstacles
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1988
SP  - 142
EP  - 154
VL  - 173
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1988_173_a12/
LA  - ru
ID  - ZNSL_1988_173_a12
ER  - 
%0 Journal Article
%A V. P. Smyshlyaev
%T Diffraction of the plane waves on conical obstacles
%J Zapiski Nauchnykh Seminarov POMI
%D 1988
%P 142-154
%V 173
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1988_173_a12/
%G ru
%F ZNSL_1988_173_a12
V. P. Smyshlyaev. Diffraction of the plane waves on conical obstacles. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 18, Tome 173 (1988), pp. 142-154. http://geodesic.mathdoc.fr/item/ZNSL_1988_173_a12/