The theory of perturbations for a polyharmonic operator with non-smooth periodic potential
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 8, Tome 169 (1988), pp. 76-83
Cet article a éte moissonné depuis la source Math-Net.Ru
In space $L_2(R^n)$, $n>1$ is considered operator $H_\alpha=(-\Delta)^\ell+\alpha V$, $\alpha\in[-1,1]$, $4\ell>n+1$, $V$ – real, periodical potential. She convergent series of perturbation theory for the eigenfunctions and eigenvalues on the rich set of kvasiimpulse are constructed.
@article{ZNSL_1988_169_a8,
author = {Yu. E. Karpeshina},
title = {The theory of perturbations for a polyharmonic operator with non-smooth periodic potential},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {76--83},
year = {1988},
volume = {169},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_169_a8/}
}
Yu. E. Karpeshina. The theory of perturbations for a polyharmonic operator with non-smooth periodic potential. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 8, Tome 169 (1988), pp. 76-83. http://geodesic.mathdoc.fr/item/ZNSL_1988_169_a8/