The theory of perturbations for a polyharmonic operator with non-smooth periodic potential
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 8, Tome 169 (1988), pp. 76-83
Voir la notice de l'article provenant de la source Math-Net.Ru
In space $L_2(R^n)$, $n>1$ is considered operator $H_\alpha=(-\Delta)^\ell+\alpha V$, $\alpha\in[-1,1]$, $4\ell>n+1$,
$V$ – real, periodical potential. She
convergent series of perturbation theory for the eigenfunctions
and eigenvalues on the rich set of kvasiimpulse are constructed.
@article{ZNSL_1988_169_a8,
author = {Yu. E. Karpeshina},
title = {The theory of perturbations for a polyharmonic operator with non-smooth periodic potential},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {76--83},
publisher = {mathdoc},
volume = {169},
year = {1988},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_169_a8/}
}
TY - JOUR AU - Yu. E. Karpeshina TI - The theory of perturbations for a polyharmonic operator with non-smooth periodic potential JO - Zapiski Nauchnykh Seminarov POMI PY - 1988 SP - 76 EP - 83 VL - 169 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1988_169_a8/ LA - ru ID - ZNSL_1988_169_a8 ER -
Yu. E. Karpeshina. The theory of perturbations for a polyharmonic operator with non-smooth periodic potential. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 8, Tome 169 (1988), pp. 76-83. http://geodesic.mathdoc.fr/item/ZNSL_1988_169_a8/