Integrable equations connected with the Poisson algebra
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 8, Tome 169 (1988), pp. 44-50
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The general $r$-matrix construction of integrable Hamiltonian
systems is applied to Poisson algebras which are function
algebras on symplectic manifolds with commutator given by the
Poisson bracket. Two types of integrable systems are described:
Hamiltonian systems on the group of symplectic diffeomorphisms
whose Hamiltonians are sums of a left-invariant kinetic energy
and a potential, and systems of two first order equations for
two functions of one variable.
			
            
            
            
          
        
      @article{ZNSL_1988_169_a4,
     author = {M. I. Golenishcheva-Kutuzova and A. G. Reiman},
     title = {Integrable equations connected with the {Poisson} algebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {44--50},
     publisher = {mathdoc},
     volume = {169},
     year = {1988},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1988_169_a4/}
}
                      
                      
                    M. I. Golenishcheva-Kutuzova; A. G. Reiman. Integrable equations connected with the Poisson algebra. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 8, Tome 169 (1988), pp. 44-50. http://geodesic.mathdoc.fr/item/ZNSL_1988_169_a4/